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© 830,000 km of roads (~20x Earth’s
circumference) run through 3,837 pro-

tected areas in South America.

© 83% of protected land is roadless but
fragmented into ~25,500 patches; half
<1 km? and only 6% >100 km?.

e Roads are widespread across regions
and IUCN categories; in most biomes,
median interior distance to roads is <3
km.

e Mitigation requires restoring connectiv-
ity, roadless cores, road regulation, and
biodiversity-sensitive planning.
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ABSTRACT

Protected areas (PAs) in South America play a crucial role in safeguarding biodiversity and ecosystem services.
However, the widespread presence of roads within PAs poses a major, yet largely overlooked, threat to their
ecological integrity. In this study, we used the most recent version of OpenStreetMap to assess the extent and
spatial distribution of road networks within South American PAs. We identified approximately 830,500 km of
roads, a length equivalent to 20 times the Earth’s circumference, within 3,837 PAs (24% of the continent’s land
area). By applying a 1-km buffer around all roads, we found that although about 83% of the protected land area
remains technically roadless, it is dissected into nearly 25,500 discrete patches, more than half of which are
smaller than 1 km?, and only 6% exceed 100 km?. Consequently, in six out of nine terrestrial biomes, the median
distance from protected interiors to the nearest road is less than 3 km. Only remote regions, such as flooded
grasslands and savannas, sub-Antarctic forests, and large portions of the Amazon basin, exhibit low road presence
within PAs. Immediate conservation action is essential, with a focus on transparent road monitoring and man-
agement to preserve the ecological functions of these critical landscapes and ensure the long-term conservation
of nature.
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Introduction

In the face of accelerating biodiversity loss, protected areas (PAs)
have become a cornerstone of global conservation efforts. Over the past
few decades, international frameworks, such as the Convention on
Biological Diversity (CBD), have markedly influenced the expansion of
PAs, both in geographic coverage and in the number of conservation
units. In South America (one of the planet’s most biogeographically
diverse regions and increasingly affected by human pressures) the PA
network now covers around 24% of the continent’s land area, although
with notable regional variations (Baldi et al., 2019). Recently, the
CBD-Kunming-Montreal Global Biodiversity Framework set an ambi-
tious new goal: to protect 30% of terrestrial ecosystems by 2030, often
referred to as the "30 x 30" target. However, as PA networks continue to
expand, so do the challenges they face from increasing human pressures
(Jones et al., 2018). Among these pressures, road infrastructure stands
out as a critical driver of multiple anthropogenic stressors, severely
undermining PAs’ ecological integrity (Ibisch et al., 2016; Laurance and
Arrea, 2017; Meijer et al., 2018; Barnes et al., 2017).

Roads pose a wide array of threats to natural ecosystems. They
fragment habitats, alter land cover, and increase access for illegal ac-
tivities such as poaching and logging. Additionally, roads introduce
pollutants, disrupt natural fire regimes, and lead to biological and
physical changes that degrade ecosystem health (Cappa et al., 2019;
Ibisch et al., 2016; Laurance and Arrea, 2017; Laurance and Balmford,
2013; Trombulak and Frissell, 2000). Despite these well-documented
threats, the full extent and spatial distribution of road networks within
South American PAs remain poorly understood. This knowledge gap
hinders effective spatial planning and management strategies, ulti-
mately compromising the long-term success of PAs in maintaining
biodiversity.

In this study, we present a comprehensive assessment of road net-
works within South American PAs, using the most up-to-date dataset
from OpenStreetMap (OSM). Our analysis addresses three main objec-
tives. First, we assess the extent and spatial configuration of road net-
works within PAs, using metrics such as road density, the proportion of
roadless areas (defined as portions of PAs located at least 1 km from the
nearest road; Ibisch et al., 2016), the median distance of protected in-
teriors to the nearest road, the proportion of main roads, the density of
access points, and the proportion of roads that dissect or incise the
protected space. Second, we assess the role of road networks in driving
habitat dissection within PAs (Jaeger, 2000). Finally, we compare the
extent of roadless areas among PAs with stricter human-use restrictions
(IUCN categories I-1V), those permitting sustainable use (IUCN cate-
gories V and VI), and those lacking formal IUCN classification. Spatial
patterns are analyzed across major biomes (e.g., tropical moist forests,
dry forests, grasslands, wetlands, and deserts) and countries to provide a
continent-wide overview of the status of PAs in South America’s diverse
environmental contexts.

Methods
Definition of protected area

According to the IUCN, a protected area (PA) is “a clearly defined
geographical space, recognized, dedicated, and managed, through legal
or other effective means, to achieve the long-term conservation of nature
with associated ecosystem services and cultural values” (Dudley, 2008).

Databases

PAs data. Terrestrial protected areas across South America were
obtained from the March 2025 release of the World Database on Pro-
tected Areas (WDPA), maintained by the United Nations Environment
Programme World Conservation Monitoring Centre (UNEP-WCMC)
(https://www.protectedplanet.net/en). Following the WDPA User
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Manual and previous global studies (WCMC, 2019), we selected
national-level polygon records with a status of "designated", "inscribed",
"adopted", or "established", and with an area larger than 1 km? resulting
in 4,015 records. Polygons smaller than 1 km? (n = 6,148) represented
only 0.2% of the total protected surface in the continent. To avoid
artificial fragmentation and overrepresentation of spatial metrics in
contiguous protected landscapes, we applied a spatial dissolve operation
to merge adjacent polygons sharing boundaries. This resulted in 3,837
spatially distinct protected areas (PAs), which we consistently refer to as
the main analytical unit throughout the manuscript. While this differs
from the original number of WDPA entries, it provides a more coherent
and ecologically meaningful spatial framework for landscape-level
analyses.

Road data. We used vector-based road data from the March 2025
release of OpenStreetMap (OSM), obtained via Geofabrik (www.geo
fabrik.de). OSM offers a detailed and up-to-date global coverage of
road infrastructure, including all major and minor road classes. To
validate our choice, we compared total mapped road length within
South American PAs against the Global Roads Inventory Project (GRIP;
Meijer et al., 2018), finding OSM to contain 5.5 times more road data.

Biome and national boundaries data. Biome boundaries were derived
from the Ecoregions2017 dataset (OResolve; available at: https://ecor
egions.appspot.com/), which provides a globally consistent classifica-
tion of terrestrial ecoregions. National boundaries were obtained from
the high-resolution Global Administrative Areas database (GADM v3.6;
available at: https://gadm.org/).

Spatial coordinate system. We adopted the Mollweide projection
(EPSG: 54009) to (i) minimize area distortion across South America and
(ii) enable consistent large-scale geographic comparisons at the global
level, including regions such as Africa, Asia, and Europe.

Data Processing

We calculated all road infrastructure metrics within PAs using the
PostGIS v3 extension for PostgreSQL and ArcGIS Pro 2.8. Extended Data
Fig. S1 provides graphical representation of spatial characteristics of
road infrastructure across PAs analyzed in this study.

Road density was computed as the total length of roads (in km) per
100 km? of PA surface. This metric reflects the overall intensity of road
development within PAs, with higher values indicating potentially
greater levels of habitat fragmentation and human disturbance.

Roadless area was defined as the portions of PAs located at least 1 km
away from the nearest road, regardless of whether the road lies inside or
outside the PA boundaries, following the approach proposed by Ibisch
et al. (2016). This distance reflects a conservative estimate of road-effect
zones, based on a systematic review showing that the majority of
ecological impacts occur within 1 km from roads. Although certain ef-
fects may extend beyond this range, especially in the context of defor-
estation or large infrastructure, the 1-km threshold provides a
continental consistent and ecologically meaningful proxy for identifying
areas with low road influence (Ibisch et al., 2016).

Proximity to roads was calculated as the median Euclidean distance
(in km) from grid cells within PA surfaces to the nearest road, regardless
of whether the road lies inside or outside PA boundaries. To represent
ecological pressure, this distance was inverted using the formula: 1 —
distance, so that higher values indicate closer proximity to roads. This
metric reflects the general accessibility of protected lands, as well as
their exposure to edge effects and potential disturbances from human
activities. To compute this, we used the “Euclidean Distance” tool in
ArcGIS Pro 2.8, which generated a raster grid with 1 km? cells covering
the interiors of PAs. Each cell value represented the shortest straight-line
distance to the nearest road. The median value across cells was then
extracted to summarize proximity.

Dissection ratio was calculated as the proportion of total road length
within PAs that physically dissects their interiors, versus roads that
penetrate the PA and terminate internally in end points (i.e., incisions).


https://www.protectedplanet.net/en
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https://ecoregions.appspot.com/
https://ecoregions.appspot.com/
https://gadm.org/
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Higher values indicate potentially greater disruption of species move-
ment and ecological connectivity.

Main roads was calculated as the proportion of total road length
within PAs classified as “motorway”, “trunk”, or “primary” in the OSM
tagging scheme, which typically represent the highest-capacity roads
with greater ecological impact.

Access density was calculated as the number of road entry points
intersecting PA boundaries per 100 km? of PA surface. This metric serves
as a proxy for human accessibility to PAs, with higher values potentially
indicating greater exposure to anthropogenic pressures.

To assess the extent to which road networks contribute to the
dissection of PAs, we calculated and compared the Effective Mesh Size
(EMS) (Jaeger, 2000) under two scenarios: (i) the PA network, which
captures the spatial configuration and connectivity of the PA system in
the absence of roads (hereafter, EMS pas), and (ii) the roadless PA
network, which includes only those PA portions located at least 1 km
away from any road (hereafter, EMS pas roadless), thus reflecting the
dissection induced by road infrastructure.

Effective Mesh Size (Jaeger, 2000) is a probability-based metric that
estimates the likelihood that two randomly selected points within a
given area fall within the same undissected (i.e., connected) patch. It is
formally calculated as:

n

1
EffectiveMeshSize = — Y  A?
ectiveMeshSize Atz

i
i=1

where At is the total area of the network, A is the area of the i-th patch,

A=
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and n is the number of patches. This approach enables robust compar-
isons across regions with varying total area, offering a standardized
measure of fragmentation.

For EMS pas, adjacent protected area polygons sharing boundaries
were merged into cohesive spatial units by applying a dissolve operation
(as described in the PAs data section). This process resulted in 3,837
spatially distinct PAs at the continental level.

For EMS pas roadlesss We applied a 1 km buffer around roads and
extracted only the portions of PAs falling entirely outside this buffer.
This process resulted in 25,473 discrete patches, representing areas with
minimal direct road influence (see roadless area calculation). The same
formula was applied, with A as the total roadless area, and A as the area
of each discrete roadless patch.

Finally, EMS values were expressed as a percentage of the total land
area of each biome or country analyzed, allowing for consistent cross-
regional comparisons of fragmentation levels relative to landscape
extent.

Results
The extent and spatial configuration of road networks

Road networks were found to be extensive and widespread within
South American PAs, totaling approximately 830,500 km (equivalent to

20 times the Earth’s circumference) and averaging 19 km of roads per
100 km? of protected land (Extended Table S1). Applying a 1-kilometer

Fig. 1. Spatial distribution of protected areas (PAs) and detailed views of roadless areas across South America. a, The study region. Green polygons represent PAs.
Rectangles highlight the locations of inset panels (b-e), which provide detailed views of roadless areas (shown in green) in specific regions. Roadless area was defined
as the portions of PAs located at least 1 km away from the nearest road, regardless of whether the road lies inside or outside the PA boundaries, following the

approach proposed by Ibisch et al. (2016).

283



S.A. Schauman et al.

buffer around all roads, we found that although about 83% of the pro-
tected land technically remained roadless (i.e., outside the buffer zone),
this space was highly fragmented (Fig. 1). Specifically, it was dissected
into nearly 25,500 discrete patches, representing a sevenfold increase
over the original 3,837 PAs. More than half of these patches (51%) were
smaller than 1 km?, and only 6% exceeded 100 km? in area. The median
distance from the protected space to the nearest road was 16 km.
Additionally, 74% of the roads dissected PAs by traversing them, while
26% penetrated without crossing, further contributing to internal frag-
mentation. Regarding road types, 11% were categorized as “main roads”
(i.e., “motorway”, “trunk”, or “primary” roads in the OSM tagging
scheme), designed for long-distance travel and thus facilitating deeper
human access into PAs (Extended Table S1).

The extent and spatial configuration of road networks within PAs
varied markedly across South American biomes and countries. The
highest road densities (112 km per 100 km?) and lowest proportions of
roadless areas (49%) were observed in deserts and xeric shrublands
(Fig. 2 and Extended Table S1), driven primarily by dense road networks
in Venezuela, Chile, and Colombia (Fig. 3 and Extended Data Fig. S2).
Mediterranean forests, woodlands & scrub, although exhibiting lower
road density (63 km per 100 km?), also displayed low levels of roadless
area (59%) and the highest values for main roads, access density, and

Deserts Flooded Grasslands
& Xeric Shrublands & Savannas
(11%) (15%)
1 1
0.5
20 Cy
d g

Temperate Grasslands, Tropical & Subtropical
Savannas & Shrublands Dry Broadleaf Forests
(4%) (14%)
1 1

0.5

0.y

Montane Grasslands
& Shrublands
(15%)

Temperate Broadleaf
& Mixed Forests
(35%)

Tropical & Subtropical
Moist Broadleaf Forests
(38%)
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dissection ratio (18%, 21 access points per 100 km?, and 85%, respec-
tively), indicating substantial human penetration into PAs (Fig. 2 and
Extended Table S1). Notably, this vulnerability is further exacerbated by
the biome’s critically low protection coverage, with only 2% of its total
area formally protected (Fig. 2). Elevated road presence was also
observed in PAs of tropical and subtropical dry broadleaf forests, where
most countries, except Peru and Bolivia, exhibited roadless area pro-
portions of approximately 50% (Fig. 3).

The road network substantially facilitates human entry into pro-
tected land. Notably, in 6 of the 9 biomes analyzed, the median distance
from protected area interiors to the nearest road was within 3 km,
underscoring the pervasive proximity of road infrastructure. The most
extreme cases were found in deserts & xeric shrublands and tropical &
subtropical dry broadleaf forests: excluding Peru and Bolivia, all other
countries with PAs in these biomes reported median distances of <1 km
between protected interiors and the nearest road (Fig. 2, Extended Data
Fig. S2, and Extended Table S1).

In contrast, road networks were relatively sparse in flooded grass-
lands and savannas and in the large PAs of the Amazonian tropical moist
broadleaf forests (Fig. 2, Extended Data Fig. S2, and Extended Table S1).
However, this apparent roadlessness was not evenly distributed across
countries. For example, although the tropical moist broadleaf forest

Mediterranean Forests,
Woodlands & Scrub

South America

0,
@) (24%)
Road density
05 1
0 % Access 05 Roadless area
! density (inverse)
»

Main Proximity
roads to road

Tropical & Subtropical Grasslands,
Savannas & Shrublands

Dissection ratio

(13%)
1

0.5

70

Fig. 2. Metrics of road infrastructure within protected area networks across South American biomes. Radar plots display six standardized metrics: Road density (km
of road per 100 km? of PA); Roadless area (proportion of PA surface >1 km from roads); Proximity to roads (1- median distance to the nearest road); Dissection ratio
(proportion of road length that dissect PAs); Main roads (proportion of road length classified as motorway, trunk, or primary); Access density (road entry points per
100 km? of PA). As these metrics differ in units, they were log-transformed and rescaled to a common 0-1 range to enable comparison across biomes. For inter-
pretative consistency, “roadless area” was inverted so that higher values indicate greater pressure. Percentages in parentheses next to biome names or the South
America label indicate the proportion of the biome’s or continent’s total land area that is protected. Dashed lines in each radar plot indicate the corresponding values
for South America, serving as a reference for comparison. Raw (non-transformed) values are available in Supplementary Table S1.
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and country.

biome reported an overall roadless area of ~90%, country-level values
varied widely: Paraguay (53%), Colombia (70%), and Argentina (73%).
A similar pattern was observed in the flooded grasslands and savannas
biome: despite a continental average of 83%, Ecuador and Venezuela
reported only 31% and 64% roadless area, respectively (Fig. 3).

At the national level, the lowest values of roadless area were
observed in Uruguay (42%), followed by Paraguay (65%), Colombia
(70%), and Argentina (77%). These countries also exhibited low median
distances from PAs to roads (<4 km). Uruguay, in particular, not only
ranked lowest in roadless area but also showed the highest road and
access densities (97 km per 100 km? and 19 access points per 100 km?,
respectively) (Extended Table S2). With the exception of French Guiana,
road networks in all countries were dominated by segments that dissect
the protected landscape (ranging from 55% to 77%), rather than roads
that merely penetrate without dissecting (Extended Table S2). Across
both countries and biomes, the hierarchical structure of road types
within PAs reflected typical transportation classifications: a relatively
small share of main roads designed for long-distance travel contrasted
with a denser network of secondary, tertiary, and local roads, which
collectively drive the extent of road presence in protected landscapes
(Fig. 2, Extended Data Fig. S2, Extended Table S1 and Extended
Table S2).

Road-induced dissection of protected areas

To further assess the contribution of road networks to habitat
dissection within PAs, we analyzed and compared two key metrics: (i)
the effective mesh size of the PA network (EMS pys), and (ii) the effective
mesh size of the roadless PA network (EMS pag roadiess)- At the continental
level, EMS pas roadless represented only 1.15% of the South American land
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area, corresponding to a 68% reduction compared to EMS pas (Fig. 4).
This sharp decline reflects the substantial impact of road infrastructure
on habitat connectivity, though it was partially buffered by the lower
road infrastructure detected in large Amazonian PAs, particularly in
Brazil, Peru, and Venezuela.

However, biome-level analysis revealed substantial variation in the
degree of road-induced dissection. In six of the nine terrestrial biomes,
EMS pas roadless Values fell below 0.2% of their total land area (Fig. 4).
The most pronounced dissection occurred in deserts & xeric shrublands
(97% reduction in EMS when accounting for roads), tropical & sub-
tropical dry broadleaf forests (80%), montane grasslands & shrublands
(77%), and tropical & subtropical grasslands, savannas & shrublands
(76%). These findings highlight that, despite differences in road den-
sities, the spatial arrangement of roads within PAs can dramatically
reduce habitat connectivity. Only the temperate broadleaf & mixed
forests biome exhibited minimal PAs habitat dissection, with just a 10%
reduction in EMS after accounting for roads (Fig. 4). This limited impact
is likely explained by the unique geographical setting of many PAs in this
biome, which are often located in remote, archipelagic, and rugged
terrains that naturally constrain road development.

At the national level, Uruguay, Argentina, and Paraguay exhibited
the highest degrees of PA road-induced dissection, with EMS pas roadless
representing just 0.04%, 0.10%, and 0.33% of their respective national
territories, corresponding to EMS reductions of 80%, 63%, and 96%,
respectively. Conversely, countries with vast roadless PAs, such as
Brazil, French Guiana, Suriname, and Venezuela, maintained higher
levels of landscape connectivity within their PAs (Extended Table S3).
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Fig. 4. (a) Percentage of roadless areas by IUCN management category. IUCN categories I-IV represent PAs primarily designated for strict nature conservation.
Categories V and VI correspond to areas allowing a greater degree of sustainable human use. “No category” refers to PAs lacking an official IUCN classification. (b)
Road-induced dissection of protected areas (PAs). Green bars represent the Effective Mesh Size (EMS) of the PA network prior to accounting for roads (EMS PAs),
reflecting its structural connectivity. Red bars indicate the EMS of PA roadless areas (i.e., areas located at least 1 km away from any road, EMS PAs roadless),
capturing the degree of dissection caused by road infrastructure. Dots represent the percentage reduction in EMS attributable to roads, illustrating their impact on

habitat connectivity.

Roadless areas across IUCN protected area management categories

The widespread presence of roads within South American PAs might
initially be attributed to road networks in areas under less restrictive
management categories. This pattern is clearer at the continental level,
where roadless areas comprised 93% of the surface in PAs categorized as
I-1V, 77% in categories V-VI, and 87% in PAs without formal IUCN
classification. However, our analysis of roadless areas across IUCN
management categories at the biome level revealed more nuanced pat-
terns (Fig. 4 and Extended Table S4). Although PAs strictly designated
for nature conservation (IUCN categories I-IV) generally showed higher
proportions of roadless areas compared to those allowing greater human
activity (categories V and VI) or those lacking formal IUCN classifica-
tion, roads were prevalent across all categories in most biomes. Notably,
exceptions to this pattern emerged. In flooded grasslands and savannas,
PAs under categories I-IV had lower roadless area values than those in
categories V and VI. Similarly, in tropical & subtropical dry broadleaf
forests, tropical & subtropical grasslands, savannas & shrublands, and
tropical & subtropical moist broadleaf forests, the extent of roadless
areas in stricter protected categories was comparable to that of unclas-
sified PAs (Fig. 4). At the national level, a similar trend was observed:
although strictly protected PAs generally maintained higher roadless
values, roads were still prevalent across all management types. An
exception was found in Brazil, where PAs without an IUCN category
(representing 40% of the total protected area analyzed for the country)
had the highest proportion of roadless areas (Extended Table S4).

Discussion
General patterns

PAs are widely expected to have minimal road infrastructure for
supporting local access, enabling sustainable economic activities, and
facilitating territorial monitoring by park rangers (Dudley, 2008).
However, our findings reveal a concerning reality: across a broad range
of environmental contexts, management categories, and national terri-
tories, many PAs in South America are extensively permeated by road
networks. This pervasiveness challenges the assumption that PA desig-
nation alone ensures ecological connectivity or effective isolation from
anthropogenic pressures. At the national level, countries such as
Uruguay, Paraguay, Colombia, and Argentina exhibited some of the
highest levels of road infrastructure within PAs, resulting in the lowest
proportions of roadless protected lands. At a biome level, only a few
regions, such as flooded grasslands and savannas, tropical and sub-
tropical moist broadleaf forests, and to a lesser extent, temperate
broadleaf and mixed forests, retain PA networks with relatively low road
densities and higher levels of roadless areas. This regional “roadless
pattern” likely reflects the generally low human accessibility in the
surrounding unprotected landscapes, rather than being a direct outcome
of differences in PA management practices.

In contrast, PAs across dry forests, grasslands, deserts, shrublands,
and savannas, which are ecosystems of high biodiversity value and
crucial for providing ecosystem services (Khosravi Mashizi and Shar-
afatmandrad, 2023; White et al., 2000; McNeely, 2003; Zhang et al.,
2023; Pennington et al., 2018; Murphy et al., 2016) are the most affected
by roads. The ecological vulnerability of these biomes is further com-
pounded by their alarmingly low protection coverage. Furthermore,
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these areas are not only subject to intense development pressures (e.g.,
infrastructure expansion and extractive industries), but also frequently
overlap with productive agricultural frontiers, which are characterized
by active land-use conversion, and with human settlements that bring
localized and persistent pressures on ecosystems.

From a methodological perspective, our study utilized the most
updated version of OpenStreetMap (OSM), which offers substantially
greater coverage of South American road networks within PAs compared
to other global datasets, for instance, 5.5 times greater than the Global
Roads Inventory Project (Meijer et al., 2018) (see Methods). However,
even this road dataset remains incomplete, particularly for informal,
illegal, or undeclared roads. A growing body of research highlights the
widespread omission of minor roads in available datasets, especially
across tropical regions where human pressures are high. In the Brazilian
Amazon, for example, recent studies using remote sensing and Al-based
models have revealed substantially higher road densities than those
captured in standard datasets (Botelho et al., 2022; das Neves et al.,
2021). These so-called “ghost roads” have been shown to strongly pre-
dict forest loss and fragmentation (Engert et al., 2024; Barber et al.,
2014). Notably, unmapped roads are not limited to the tropics: in boreal
Canada, only 3% of randomly selected circular plots had roads fully
mapped in OSM (Hoffmann et al., 2024). This growing evidence
collectively underscores that our findings, though substantial, likely
underestimate the full extent of roads, particularly in regions with lower
institutional capacity, surveillance, and enforcement.

Ecological and conservation implications

Roads exert influence beyond their immediate surroundings, causing
a broad spectrum of direct and indirect effects on protected ecosystems.
These include land-use changes, the spread of invasive species and dis-
eases, chemical and physical pollution, poaching, and shifts in wildlife
demographics, among others (Ibisch et al., 2016; Laurance and Arrea,
2017; Trombulak and Frissell, 2000). From a landscape ecology
perspective, road networks are a major driver of habitat fragmentation.
By dividing continuous habitats into smaller and often isolated patches,
roads compromise ecological connectivity, essential for species move-
ment, gene flow, and the maintenance of ecological processes (Fahrig,
2003; Fahrig and Rytwinski, 2009; Haddad et al., 2015). This frag-
mentation effect transforms PAs into ecological “islands”, limiting their
long-term viability as conservation units.

No biome is immune to these pressures. For instance, in tropical
forests, more than 95% of land-use change, fires, and carbon emissions
occur within 50 km of a road (Barber et al., 2014). In arid and semi-arid
regions, roads can lead to soil erosion, hinder species movement and
communication, and facilitate the introduction of invasive species
(Cappa et al., 2019; Dean et al., 2019). Additionally, genetic studies
have documented reduced genetic diversity in populations isolated by
road infrastructure in dryland environments (Ascensao et al., 2016;
Holderegger and Di Giulio, 2010; Sunnucks and Balkenhol, 2015). Thus,
pervasive road infrastructure within South America’s PAs presents an
overlooked threat to the continent’s primary conservation strategy,
which aims to “enhance the state of biodiversity by safeguarding eco-
systems, species, and genetic diversity”.

Policy and management implications

The extensive road networks within South American PAs pose sub-
stantial challenges for effective conservation, underscoring the urgent
need for coordinated and actionable strategies at regional and national
levels (Mandle et al., 2015). These efforts align with Target 14 of the
Kunming-Montreal Global Biodiversity Framework, which calls for
integrating biodiversity into infrastructure and land-use decision-mak-
ing across all sectors. Yet, it must be acknowledged that many of the
recommendations for minimizing infrastructure impacts have been
consistently highlighted in scientific literature for over two decades,
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with limited implementation. This persistent inertia reflects not a lack of
knowledge, but rather a deficit in political will, inter-institutional co-
ordination, and enforcement capacity. Without addressing these struc-
tural barriers, even the most technically sound solutions will continue to
fall short.

A critical step involves embedding biodiversity concerns into na-
tional and regional infrastructure planning from the outset, particularly
in countries where road infrastructure inside PAs is most extensive.
Doing so ensures that development is harmonized with, rather than
detrimental to, regional conservation priorities. Simultaneously, tar-
geted conservation actions at the site level must be prioritized to address
existing road impacts and restore ecological connectivity. One effective
measure is the legal designation of roadless areas, also within ecologi-
cally sensitive areas, to help prevent further fragmentation and protect
key habitats (Selva et al., 2015; Ibisch et al., 2016; Hoffmann et al.,
2024). Beyond halting road expansion within PAs, it is also critical to
regulate new road construction in remaining unprotected roadless
patches, especially those adjacent to PAs, in order to avoid undermining
their ecological function and connectivity. In areas already fragmented
by dense road networks, restoration efforts are essential. These may
include rerouting or decommissioning non-essential roads, as well as the
creation of wildlife corridors to reconnect isolated habitats and reduce
edge effects. Furthermore, seasonal road closures during critical
ecological periods, such as breeding or migration, combined with public
outreach campaigns, can reduce ecological disruption and foster
broader societal awareness of road-related impacts (Selva et al., 2015;
Loro et al., 2015; Ament et al., 2023; Hilty et al., 2020).

Equally important is the development of biome-specific management
strategies that reflect the distinct ecological sensitivities and recovery
capacities of different ecosystems. While high road densities were
observed in PAs across all biomes, our findings indicate that dry forests,
grasslands, deserts, shrublands, and savannas are particularly exposed
to roads. These biomes are especially vulnerable due to their low resil-
ience to disturbance and slow recovery following anthropogenic
disruption (McNeely, 2003; Pennington et al., 2018). Conservation
strategies must therefore be tailored to address these vulnerabilities,
acknowledging both their ecological fragility and the limited attention
they have received in policy and scientific agendas.

Moreover, our findings highlight the need to systematically reassess
the extent of road infrastructure allowed within each IUCN management
category. Despite advances in monitoring connectivity between PAs,
there is a striking absence of indicators within the Kunming-Montreal
framework that account for internal linear infrastructure. Addressing
this gap is essential to enable countries to track and report progress more
accurately under the Global Biodiversity Framework. Particularly con-
cerning is the prevalence of roads in categories I-IV, which are desig-
nated for strict protection and minimal human intervention (Dudley,
2008). Even minor roads can cause significant ecological disruption by
fragmenting habitats and restricting species movement (Donnelly and
Marzluff, 2004; Boakes et al., 2009; Barnes et al., 2017). Meanwhile,
categories V and VI, which permit sustainable use and human activities,
often contain more extensive road networks. Although these categories
accommodate human presence, there remains a pressing need to eval-
uate and potentially limit road development.

Striking a balance between economic development and environ-
mental protection presents one of the most critical challenges for future
conservation strategies. The 20th century and early decades of the 21 st
have seen a dramatic expansion of road networks (Laurance, 2018;
Ibisch et al., 2016). Projections suggest that by 2050, an additional 25
million kilometers of paved roads will be built compared to 2010, a
length sufficient to encircle the Earth more than 600 times (Dulac, 2013;
Laurance et al., 2014). This expansion is concentrated primarily in
developing countries of the Global South, where environmental stakes
and economic demands are high (Alamgir et al., 2017; Laurance and
Arrea, 2017). In South America, this growth is largely driven by infra-
structure serving agro-export economies, domestic consumption, and
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frontier settlement, adding significant pressures on ecosystems
(Fearnside and de Alencastro Graga, 2006; Verburg et al., 2014; Carrero
et al., 2020; Carpenter et al., 2025). While expanding PA coverage to
30% of terrestrial land by 2030 is a crucial milestone under the
Kunming-Montreal Global Biodiversity Framework, it is increasingly
evident that spatial expansion alone will not guarantee conservation
success. Preventing unauthorized road construction and halting infra-
structure proliferation across all PAs is thus essential to ensure their core
mission: safeguarding biodiversity and securing the ecosystem services
on which human societies depend.
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