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A B S T R A C T

 

Different biological communities may exhibit similar spatial and/or temporal distributional 

patterns, a property termed community concordance. This study was conducted in a 

tropical irrigation system (Araguaia River floodplain) and aimed to quantify concordance 

levels between three aquatic communities (zooplankton, benthic macroinvertebrates, 

and aquatic macrophytes), and between these communities and a set of environmental 

predictors. To accomplish these goals, we used ordination techniques and Procrustean 

analysis. There were no relationships between the communities, and only zooplankton 

community patterns were significantly correlated with environmental predictors. These 

results indicate that biological surrogacy can be a flawed approach at small spatial scales 

and highlight the importance of the zooplankton community as a reliable ecological 

indicator in this type of system.

© 2014 Associação Brasileira de Ciência Ecológica e Conservação.  

Published by Elsevier Editora Ltda.

Introduction

Ecological studies recurrently search for patterns in the 
spatiotemporal distribution of organisms and attempt to 
explain these patterns according to environmental gradients, 
biotic interactions, and dispersal processes (Bowman et al. 

2008). However, a particular biological community can also be 
used to predict the distribution of the community of interest 
(i.e., the response ª species x samplesº data matrix). It may 
be asked, for instance, whether different groups of aquatic 
organisms generate patterns of classiication or ordination of 
loodplain lakes in a similar way or, simply, whether they are 
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concordant. If they are concordant, then we can try to identify 
the mechanism behind this pattern. Recent studies have 
suggested that biotic interactions (competition, predation, 
or facilitation) are the most likely mechanisms underlying 
concordance (see Johnson & Hering 2010). Moreover, 
concordant responses are also expected to arise from similar 
responses to environmental gradients (Bini et al. 2007; Rooney 
& Bayley 2012). As an important implication, strong levels of 
concordance may indicate that only one of the concordant 
groups could be used in biological monitoring programs 
(Sanchez-Fernandez et al. 2006), reducing costs and sampling 
processing time.

Aquatic macrophytes play an important role in the 
formation of environmental gradients. For instance, 
macrophytes are an important source of organic matter for 
benthic organisms and probably are the main substratum for 
periphyton in Neotropical lakes (Padial et al. 2012). Also, these 
plants can inluence different communities by decreasing 
water velocity, increasing lood supply, and providing refuges 
(Declerck et al. 2007; Thomaz et al. 2008). Drastic changes in 
ecosystem properties (e.g., water transparency and nutrient 
concentrations) can be caused by changes in the composition 
of aquatic plants (Scheffer 2004). Thus, directly or indirectly, 
changes in the species composition of aquatic plants are 
likely related to changes in the structure of other aquatic 
communities.

Floodplain systems around the world have been 
intensively modiied by different human activities, including 
agriculture-related impacts (e.g., water diversion and 
contamination; Lemly et al. 2000). However, agroecosystems 
(e.g., irrigated rice ields) can still contribute to regional 
biodiversity (Maltchik et al. 2011). Thus, the use of surrogate 
groups, after validation, may be a cost-effective strategy to 
monitor the status and attest the ecological importance of 
these systems. In the present study, we tested for patterns 
of community concordance between zooplankton, benthic 
macroinvertebrate, and aquatic macrophyte communities 
inhabiting a rice irrigation system in the Araguaia River 
loodplain of Brazil. We also tested the relationship between 
these communities and limnological predictors. We predict 
strong patterns of community concordance, considering the 
strong structuring role of aquatic macrophytes in shallow 
aquatic environments.

Material and methods

Study area

This study was conducted at the Sistema de Irrigação Luís 
Alves do Araguaia. This is a rice (Oryza sativa L.) irrigation 
system located in the Araguaia River loodplain (50°32’ W 
and 13°12’ S, São Miguel do Araguaia City), Goiás State, Brazil, 
with area of approximately 21,427,800 m². Data were gathered 
during March of 2005 at six sampling sites: (1) Lago de Luís 
Alves (LL), a lake that is used as water source for the whole 
system; (2) Rio Verde (RV), a river that receives the irrigation 
efluents; (3) adduction channel (AC); (4) drainage channel 
(DC); (5) secondary channel (SC); and (6) Lago do Brito (LB), a 

lake within the loodplain but outside the irrigation system 
(Fig. S1, supplementary material online).

Environmental variables

The following environmental variables were measured with a 
digital probe (WD-35642-60 model): pH, dissolved oxygen, and 
conductivity. Water samples were analyzed for biochemical 
oxygen demand (BOD), turbidity, iron, total Kjeldahl nitrogen, 
potassium, manganese, and sodium concentrations following 
the methods described by APHA (2005).

Biological data

Zooplankton samples were taken by pumping 1,000 L of water 
through a 68 µm plankton net. Samples were ixed immediately 
with 5% buffered formalin. With the use of a Sedgwick-Rafter 
chamber and an optic microscope, we counted ive sub-
samples (2 mL each) taken with a Stempel pipette from the 
concentrated samples (100 mL). Zooplankton density was 
then measured as individuals per m3. Zoobenthic community 
was sampled by taking two sub-samples at each sample site 
with a Petersen grab (0.0252 m2). Samples were kept in plastic 
bags with 4% formaldehyde. In the laboratory, the material 
was washed through a series of sieves with different mesh 
sizes (0.15 mm to 50 mm), and all individuals were counted 
and identiied with the aid of a stereoscopic microscope. 
Macrophyte surveys were conducted in the sampling sites 
and in areas downstream and upstream of these sampling 
sites until the detection of all species. Emergent, loating, or 
leaf-loating macrophytes were collected manually, whereas 
submerged individuals were searched with a rake.

Data analysis

Detrended correspondence analysis (DCA; Hill & Gauch 1980) 
was used to ordinate sites according to each aquatic community 
(zooplankton, zoobenthos, and aquatic macrophytes). To test 
the effect of numerical resolution on patterns of community 
concordance, we used density and presence/absence datasets. 
A principal component analysis (PCA; Legendre & Legendre 
1998) from a correlation matrix was performed to ordinate 
sites according to the abiotic variables. Except for pH and 
incidence data (in the case of aquatic macrophytes), all 
variables were log-transformed prior to analyses.

Procrustes analyses (Jackson 1995) were undertaken based 
on the scores of the irst two DCA and PCA axes to quantify 
the levels of concordance between the communities and their 
relationships with the environmental variables. Procrustes 
analysis provides a measure of lack of it or lack of concordance, 
which is the sum of the squared deviations between the 
corresponding ordinations (m2). After, this measure can be 
converted to a correlation statistic r (the square-root of 1-m2), 
varying from 0 (no concordance) to 1 (total concordance). Its 
statistical signiicance (PROTEST) was assessed by 720 Monte 
Carlo randomizations (Jackson 1995). Signiicant r-values 
would then indicate that pairs of communities are concordant 
or that there are associations between community structure 
and environmental data.
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Results

Most environmental variables showed high levels of variation, 
as observed by the coeficients of variation (Table 1). The irst two 
principal components explained 85.2% of the total variation in 
the environmental dataset. RV stands out as the most dissimilar 
sampling site, showing unique environmental conditions (Fig. 
1, Table 1). The highest values for the variables negatively 
correlated with the irst principal component (turbidity, 
conductivity, potassium, sodium, iron, and manganese 
contents) were registered in DC and SC (whereas the lowest 
values were found at RV). The sampling point LB showed the 
highest values of pH and BOD (which were positively correlated 
with the second axis), whereas SC, AC, and RV presented the 
highest nitrogen concentrations (Fig. 1, Table 1).

One hundred and three (103) taxa were identiied: 62 for 
zooplankton, 17 for zoobenthos, and 24 aquatic macrophytes. 
For zooplankton, the highest species richness was found in 
sampling sites LL and AC, whereas the lowest value was observed 
at RV. The lentic environments (LL and LB) showed the highest 
density values. For zoobenthos, both density and richness 
reached maximum values in lotic habitats (DC and RV; Fig. S2, 
supplementary material online). Aquatic macrophytes richness 
peaked at LL, LB, and RV (Fig. S2, supplementary material online).

The results from DCA performed for each taxonomic group 
and different numeric resolutions (i.e., density or presence/
absence data) showed variable ordination patterns (Fig. 1). 
However, it can be observed that RV stands out as the most 
dissimilar sampling point in most of the ordination plots (Fig. 
1), except for the analysis performed with zoobenthos density 
data. The Procrustes tests detected a signiicant pattern of 
concordance only between zooplankton community structure 
and environmental variables (Table 2).

Discussion

Except for the strong association between zooplankton 
community structure and environmental characteristics, 
no other pattern of concordance was found, either between 
the communities or between the communities and the 

environmental variables. An important initial discussion 
related with the search for surrogates groups, which goes 
beyond the analysis of p-values, has to do with the analysis 
of effect sizes. In this context, we found intermediated level 
of concordance (r-values ranging from 0.42 to 0.83). A review 
conducted by Heino (2010), for instance, indicated similar 
levels of concordance, with r-values generally lower than 0.71 
(or m2 > 0.5). Thus, independently of the signiicance levels, 
we would suggest the use of surrogates only in instances in 
which large concordance levels are found.

The lack of concordance would suggest that either (i) 
each taxonomic group studied here have a unique response 
to environmental gradients (not investigated by us) or (ii) 
the spatial extent of our study area was too small to contain 
wide environmental gradients that could produce patterns 
of concordance. In a study aiming to test the relationships 
among macroinvertebrates, bryophytes, and ishes, Paavola et 

al. (2006) found that patterns of concordance were much less 
evident at small scales (as in a single river) than in a whole 
ecoregion. It is expected, therefore, that the responses of 
taxonomic groups to environmental gradients are similar at 
regional scales (Heino 2001) and different in local scales that 
encompass low environmental variability (Paavola et al. 2006; 
Bini et al. 2007). We argue, however, that low environmental 
variability is not a suitable explanation to the absence of 
signiicant relationships, as many variables known to be 
important in structuring aquatic communities (e.g., turbidity, 
oxygen saturation, and conductivity) were found to have 
high coeficients of variation. In the same vein, Dolph et al. 
(2011) demonstrated that signiicant patterns of community 
concordance were found at different spatial scales and that 
community concordance degrees were, in some cases, even 
stronger at small spatial scales (catchments) than at larger 
spatial scales (ecoregions).

A number of studies have demonstrated a strong role 
of aquatic macrophytes on different aquatic communities 
(Scheffer 2004 and references therein), even when their 
abundances are low (Gasith & Hoyer 1998). Therefore, the lack 
of concordance between aquatic plants and other communities 
is surprising. Given the paucity of studies on community 
concordance encompassing this study speciically, it is 

Environmental variables Mean Minimum Maximum CV Pearson correlation (r)

1st Axis 2nd Axis

Turbidity (NTU) 24.2 3.4 45.9 64.0 -0.99 -0.11

Potassium (mg/L) 1.5 0.2 3.5 71.9 -0.99 0.12

Sodium (mg/L) 1.6 0.5 2.4 42.4 -0.97 0.03

Conductivity (µS/cm) 30.7 12.0 46.0 38.2 -0.97 0.20

Iron (mg/L) 1.4 0.2 1.7 42.6 -0.92 0.10

Manganese (mg/L) 0.1 0.0 0.1 41.9 -0.92 0.00

Nitrogen (mg/L) 8.3 7.8 9.3 7.7 -0.57 -0.76

Oxygen saturation (%) 59.8 38.0 80.1 27.9 -0.48 -0.59

Biochemical oxygen demand (mg/L) 0.7 0.1 1.9 116.0 -0.57 0.64

pH 6.7 6.2 7.6 7.2 -0.03 0.84

CV = coefficient of variation (%).

Table 1 - Summary statistics of the environmental data and Pearson’s correlation coefficients between environmental 
variables and principal component analysis (PCA) axes scores (values ≥ 0.6 are in bold). 
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of the zooplankton community in biomonitoring programs. 
Conversely, as indicated above, at least in the irrigation 
system studied here, it cannot be considered as a surrogate 
for other biological groups.

Biomonitoring programs can beneit from the use of surrogate 
groups to predict the structure of other biological groups 
(Landeiro et al. 2012) and also indicate human disturbances 
in wetlands (Rooney & Bayley 2012). Stevens et al. (2007), for 

premature to speculate further on the importance of aquatic 
plants in generating patterns of community concordance.

Compared to other groups, the zooplankton community 
is expected to have the shortest life cycle and, therefore, to 
display stronger responses to environmental gradients (Allen 
et al. 1999). Indeed, at the small spatial scale investigated by 
us, it was the only group signiicantly correlated with the 
environmental variables. This result indicates the importance 

Fig. 1 – Detrended correspondence analysis (DCA) and principal component analysis (PCA) results. LL = Lago de Luiz Alves; AC = adduction 

channels; DC = drainage channel; LB = Lago do Brito; RV = Rio Verde; SC = secondary channel; K = potassium; EC = conductivity; Turb = 

turbidity; Na = sodium; Fe = iron; Mn = manganese; BOD = biochemical oxygen demand; N = total Kjeldahl nitrogen.
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instance, studied the performance of beavers as surrogates for 
the conservation of stream amphibians, whereas Paszkowski & 
Tonn (2006) found highly concordant patterns between trophic 
guilds of birds, suggesting that monitoring could be conducted 
with only one of them. Other studies, however, demonstrated 
that the use of surrogates is not reliable in every circumstance 
(Bini et al. 2007; Lopes et al. 2011). Thus far, the weight of 
evidence suggests that the use of surrogates as a strategy for 
minimizing biomonitoring costs is unreliable (Heino 2010). This 
implies that the results obtained with a particular biological 
group should not be extrapolated to other, unanalyzed, groups. 
Therefore, it is important to highlight that the reliability of the 
surrogacy approach should be tested rather than assumed.
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