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h  i g  h  l  i  g  h  t  s

• Open  biomes cover ∼60% of land

worldwide,  and  are  associated  with

many  biodiversity hotspots.
• There,  plants  typically  allocate most

biomass belowground,  yet  functional

roles  of  belowground  coarse  organs

are  overlooked.
• Perenniality  and decomposability of

belowground  coarse organs  can differ

greatly  from  that  of fine roots.
• We  call for  the inclusion  of below-

ground coarse organs  and their func-

tions,  especially in carbon  cycling

research.
• Such inclusive approach can  refine

mitigation policies and  our view  on

the  functioning and conservation  of

open  biomes.
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a  b  s  t  r a  c t

Open  biomes such  as grasslands,  savannas,  shrublands  are  associated  with  many  global  biodiversity

hotspots, and cover ∼60% of land globally.  Yet, extensive and increasing anthropogenic  activities  threaten

their functioning and  biodiversity.  Here,  we argue that, in open  biomes,  researchers  and  stakeholders  (e.g.,

policy-makers,  practitioners)  should  more  comprehensively  acknowledge  that  more  than  half of a  plant’s

biomass  is typically located belowground.  Not  only  fine roots  but  different  belowground coarse  organs of

plants  (e.g.,  thick roots, rhizomes) play key ecosystem functions that  have been  largely  neglected in basic

and  applied ecology. By more accurately accounting  for  the  distribution of these  organs along  ecological

gradients,  their  biomass turnover  and decomposition  rate, we would  improve  estimates of carbon  cycling

(core  in climate change  mitigation policies) as  well  as  ameliorating  conservation efforts  focused on open

biomes worldwide.
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Setting the scene: the global importance of open biomes for

ecosystem functioning and conservation

Grassy and shrubby open biomes – including grasslands, savan-
nas, and shrublands – shaped by  recurrent disturbance regimes
(e.g., fire, grazing; Durigan and Ratter, 2016), cover ∼60% of land
globally (Dinerstein et al., 2017; Ottaviani et al., 2020). Open biomes
are also rich in endemic species and thus have a  particularly high
conservation value (Murphy et al., 2016), and are associated with
almost half of the global biodiversity hotspots (Hopper et al., 2021;
Myers et al., 2000). Yet, open biomes are experiencing severe
threats (Bardgett et al., 2021; Parr et al., 2014; Strömberg and
Staver, 2022), which are  also linked to the prevailing, and still
persisting paradigm that considers them degraded early stages of
forest succession, suitable for conversion to  intensive agriculture or
afforestation (for an overview, see Veldman et al., 2015; Veldman,
2016). The critical importance for ecosystem functioning, climate
change mitigation, and biodiversity conservation of open biomes
has been historically ignored despite repeated calls by  the scien-
tific community (e.g., Bond, 2019; Buisson et al., 2022; Veldman
et al., 2015).

Plants in open biomes are adapted to fire, grazing, and/or
drought, which can operate as eco-evolutionary forces shaping
plant functional strategies (Maurin et al., 2014; Simon et al., 2009).
The extent to which these adaptations give plant species in open
biomes sufficient capacity to  cope with exacerbating environmen-
tal conditions and changing regimes – such as more severe fires
and heat waves, and rising temperatures – is  currently unknown.
These adaptations include resource-conservative strategies, char-
acterized by considerable allocation of biomass belowground in
specialized coarse organs that can store large pools of carbohy-
drates (of different types) and shelter buds that can regenerate
aboveground biomass after disturbance (e.g., Ottaviani et al., 2020;
Pausas et al., 2018; Simon et al., 2009). These plant organs and
related strategies promote key ecosystem functions, including
biomass production, soil stabilization, and carbon sequestration in
the soil (Klimešová et al., 2018,  2021, 2023; Ottaviani et al., 2021;
Teixeira et al., 2022). Nevertheless, belowground coarse organs
(BCOs) have been largely overlooked in  basic and applied ecology
as well as in climate change mitigation research.

In this piece, BCOs refer to  any plant organ located belowground,
other than fine roots, (e.g., thick roots, rhizomes, lignotubers,
xylopodia, bulbs; Klimešová  et al., 2018). We use BCOs inclu-
sively, because our aim is to call for a  broader assessment of the
importance of BCOs in  open biomes’ dynamics, functioning, and
biodiversity conservation, rather than to  redefine well-established
terms and notions in the literature – such as belowground bud  bank
and clonal organs (Klimešová et al., 2019; Pausas et al., 2018) or
underground storage organs (Wigley et al., 2020).

We address the relevance of open biomes for ecosystem func-
tioning, with a  particular reference to the core function of soil
carbon cycling and the role played by plant BCOs. We  discuss how
underestimating the belowground dimension (e.g., by focusing on
fine roots only) can undermine our capacity to assess and value
ecosystem functioning as well as to support conservation actions
in open biomes. Finally, we  provide our  perspective on the need
to gather more realistic and accurate estimates of the contribu-
tion of all belowground organs to  ecosystem functioning in globally
distributed open biomes.

Digging deeper (and coarser) into the soil carbon cycling of

open biomes

There is growing recognition that open biomes play major roles
in carbon cycling globally (Bengtsson et al., 2019; Zhao et al., 2020).

Particular attention has been devoted to belowground carbon
storage and sequestration to explore the potential of  grasslands,
savannas, and shrublands in  mitigating climate change. For exam-
ple, a recent study estimated that grasslands account for nearly a
third of global terrestrial carbon stocks (Bai and Cotrufo, 2022). It
is now widely acknowledged that  carbon storage in  open biomes
is chiefly happening belowground (Fidelis et al., 2013; Zhou et al.,
2022), therefore carbon cycling could only be poorly assessed by
remote sensing (Cavender-Bares et al., 2022). For  example, grass-
land soils contain 80–94% of the total carbon pool as soil organic
carbon and in  plant organs located belowground (Liu et al., 2021).

Nevertheless, studies examining plant-soil interactions and
their effects in  the carbon cycle are often directed towards fine
roots only, overlooking the contribution of BCOs in  carbon storage
and cycling (see e.g., Bai and Cotrufo, 2022). BCOs perform multiple
key functions for the plant, such as (1) storage of carbohydrates and
buds for sprouting after seasonal rest and regeneration after major
disturbances (e.g., drought, fire, herbivory), (2) space exploration
and occupancy, (3) resource absorption by determining the loca-
tion of fine roots, and (4) anchorage in the soil (Bell and Tomlinson,
1980; Klimešová et al., 2018). BCOs can account for a  substantial
component of plant community biomass in open biomes (Mokany
et al., 2006; see Table 1), which is  often higher than that  of fine roots
(Blume-Werry et al., 2018) and aboveground biomass (Ottaviani
et al., 2020; Table 1), and are integral to  belowground litter and car-
bon cycle. Despite their relevance, BCOs are understudied in  plant
ecology at large (compared to  stems, leaves, seeds, or  fine roots;
Klimešová et al., 2020; Laliberté, 2017), and their role in carbon
cycle is  rarely examined even though the mechanisms and decom-
position rate can differ greatly between belowground plant organs
(e.g., Amougou et al., 2011). This constitutes, in our opinion, a sig-
nificant gap that needs to  be better addressed in  future studies and
policies.

We highlight here three main reasons why  BCOs should be taken
into account to  better understand their contribution and potential
effects on the overall carbon cycle in  open biomes. We use rhi-
zomes as an example because these organs are very common across
species forming grassy and shrubby biomes, and therefore tend to
be  more studied than tubers, lignotubers, xylopodia, or  bulbs (but
see Meller et al., 2022; Pausas et al., 2018; Tsakalos et al., 2022).
However, the same reasoning applies to the other BCOs. First, rhi-
zomes may  account for a  conspicuous amount of plant biomass
at the community level in  open biomes that may equal or exceed
aboveground biomass (Table 1). Rhizome biomass of an individ-
ual plant increases during establishment until it reaches maturity
(Bell and Tomlinson, 1980). Ancient open ecosystems may  host
old, developed, large individual plants with rhizomes of  remark-
able biomass that has been accumulated over several growing
seasons (Buisson et al., 2022). Rhizome biomass may  scale lin-
early with aboveground biomass (slope of the scaling relationship
∼1; Ottaviani et al., 2021), possibly due to  accumulation over sea-
sons being balanced by changes in decomposition rate with age
(for  herbs, see Harris et al., 2023), and the rhizome:aboveground
biomass ratio can be highly species-specific. Second, the peren-
niality of BCOs may  vary across environmental gradients. For
example, rhizomes tend to be more persistent with a slower
biomass turnover under drier and more nutrient-limited condi-
tions, which may  lead to  a higher standing rhizome biomass in  arid
and low-productive temperate grasslands (Klimešová  et al., 2018,
2023). Additionally, rhizomes contribute to soil organic carbon frac-
tion and litter decomposability differently than roots because of
different tissue composition between these belowground organs
(hence recalcitrance to  decomposition; Amougou et al., 2011).
Third, rhizome biomass can be markedly reduced by  even slight
increases in  grassland management intensity (Ottaviani et al., 2021)
– with implications for other plant and ecosystem functions specif-

119
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Table  1

Examples of mean values and ratios of community-level rhizome (Rhiz) and aboveground (Above) biomass data in four vegetation types (in italics) from  open biomes

worldwide. Vegetation types are ordered alphabetically, and within them each study is  sorted by an  ascending order of Rhiz/Above biomass ratio (in bold).

Vegetation type Country Rhiz biomass [g m−2] Above biomass [g m−2] Rhiz/Above biomass Reference

Temperate grassland

Czechia 199 372 0.54 Klimešová  et al., 2021

USA  (Kansas) 280 430 0.65 Benning and Seastedt, 1997

The  Netherlands 681 810 0.84 Olff et al.,  1994

UK  204 195 1.05 Dickinson and Polwart, 1982

Temperate wetland

USA (New York) 833 1091 0.76 Bernard and Fiala, 1986

Czech Republic 2430 1401 1.73 Fiala, 1976

Swedena 1129 216 5.23 Sjörs, 1991

Tropical savanna

Brazilb 25 534 0.05 Fidelis et al., 2013

Brazilc 882 603 1.46 Teixeira et al., 2022

Tundra

USA (Alaska) 55 67  0.81 Dennis, 1977

Swedend 1034 673 1.54 Blume-Werry et  al.,  2018

USA  (Alaska) 1055 477 2.21 Miller et  al., 1982

a This study deals with an open fen, which we consider here to  belong to  wetlands, in a  broader sense.
b This study separates roots (including fine and thick ones) vs other belowground organs (e.g., rhizomes, bulbs).
c This study includes different types of belowground coarse organs (i.e., rhizomes, thick roots, xylopodia, bulbs).
d This study separates fine (≤1 mm  diameter) vs coarse (>1 mm  diameter) roots, and biomass values were extrapolated from Figure 1  in that paper.

ically provided by rhizomes, such as storage of carbohydrates and
buds for vegetative regeneration or protection against erosion
(Klimešová et al., 2023), and for species diversity (Lisner et al.,
2021). In tropical savannas, where shrub abundance is  higher, the
relationship between biomass allocation strategies, management,
and ecosystem functioning may  differ (Fidelis et al., 2013; Teixeira
et al., 2022).

Improving assessments of belowground functioning and

conservation actions in open biomes

Standardized protocols to identify BCOs and collect data on
these organs are becoming increasingly available (e.g., measuring
traits; Klimešová et al., 2019; Pausas et al., 2018; Wigley et al.,
2020). These approaches can be readily implemented to  improve
the accuracy of carbon flux estimates, such as using traits to esti-
mate biomass allocation strategies in  different plant organs (e.g.,
Klimešová et al., 2021). Multiple lines of evidence indicate that
incorporation of BCOs contributes to a  broader understanding
of carbon cycle in open biomes. However, accurate estimates of
biomass allocated to  BCOs are often missing from the literature
(e.g., Bai and Cotrufo, 2022), and particularly in  tropical grass-
lands and savannas, where they play key functional roles (Teixeira
et al., 2022). The process of providing benchmarks, against which
the outcomes of climate-change mitigation or conservation actions
can be compared, may  benefit from including summaries of the
belowground biomass allocation to different organs in  healthy
ecosystems – considering that  relative abundance and biomass of
different BCOs and fine roots can change along environmental gra-
dients (Blume-Werry et al., 2018; Klimešová et al., 2023).

Conclusions

Ecosystem functions and biodiversity of open biomes have been
historically undervalued by scientists, policy-makers, and the gen-
eral public. Here, we  call for greater consideration of the importance
of BCOs in playing key, yet overlooked roles to support nature
and people in open biomes worldwide. BCOs take a  long time to
become fully developed, considerably longer than the time needed
for establishment of fine roots (which have a quicker biomass
turnover than BCOs), stressing the relevance of protecting ancient
open biomes (Buisson et al., 2022; Nerlekar and Veldman, 2020).
We  argue that these differences in the rate of biomass accumula-

tion and decay should be better considered to  design more accurate
and effective climate mitigation policies and conservation actions.
This calls for rethinking the timing at which the ecosystem health
and the management practices are monitored and assessed in  open
biomes. Otherwise, these will likely fail  to deliver the expected
outcomes for soil carbon stock and sequestration as well as for
biodiversity at the local and global scale.
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Klimešová, J., Martínková, J., Bartušková, A., Ott, J.P., 2023. Belowground plant
traits and their ecosystem functions along aridity gradients in grasslands. Plant
Soil 487, 39–48, http://dx.doi.org/10.1007/s11104-023-05964-1.

Laliberté, E., 2017. Below-ground frontiers in trait-based plant ecology. New
Phytol.  213, 1597–1603, http://dx.doi.org/10.1111/nph.14247.
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