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• Non-climatic  variables  improve  eco-
logical  niche models  (ENMs).

• Addition  of vegetation  cover con-
strains predicted  suitable  areas.

• Estimated  areas  differ most  for  birds
with high and  medium  forest  depen-
dency.

• ENM provides  useful information to
support quick  decisions  at broad
scale.
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a b  s t  r a  c t

Ecological  niche  models (ENMs)  are often  used  to investigate  how  climatic  variables from  known  occur-
rence records  can  estimate  potential species  range distribution.  Although  climate-based  ENMs provide
critical  baseline information, the  inclusion  of non-climatic  predictors  related  to vegetation cover might
generate  more  realistic  scenarios.  This  assumption is  particularly  relevant for  species  with  life-history
traits  related  to forest  habitats  and sensitive  to habitat  loss  and  fragmentation.  Here, we  developed  ENMs
for  36  Atlantic  Forest endemic  birds  considering  two  sets of predictor  variables:  (i) climatic  variables only
and (ii) climatic  variables  combined with  the  percentage  of remaining native  vegetation.  We hypothe-
sized  that  the  inclusion  of native  vegetation  data would  decrease  the  potential range  distribution of
forest-dependent  species  by  limiting  their  occurrence  in regions  harboring  small areas  of native  vegeta-
tion habitats,  despite  otherwise  favorable  climatic  conditions.  We also  expected  that  habitat restriction
in  the  climate–vegetation  models would  be  more  pronounced  for  highly  forest-dependent  birds.  The
inclusion  of vegetation  data  in the  modeling procedures restricted  the  final distribution ranges of 22 out
of 36 modeled  species,  while the 14 remaining  presented an  expansion of their  ranges. We  observed
that species  with  high  and  medium  forest  dependency showed  higher  restriction in range size predic-
tions  between predictor  sets than  species  with  low forest  dependency, which  showed  no alteration  or
range  expansion.  Overall, our  results suggest  that  ENMs  based  on climatic  and  landscape  variables  may
be  a useful tool for  conservationists  to better  understand  the  dynamic  of bird  species  distributions in
threatened  and highly  fragmented  regions  such as the  Atlantic  Forest  hotspot.
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open  access  article  under  the  CC  BY-NC-ND license  (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

∗ Corresponding author.
E-mail addresses: anneliz.oliveira@gmail.com (A.E. Oliveira-Silva), piratelli@ufscar.br (A.J. Piratelli), damaris@zurell.de (D. Zurell), fernandors@ufscar.br (F.R. da Silva).

https://doi.org/10.1016/j.pecon.2021.09.002
2530-0644/© 2021 Associação  Brasileira de Ciência Ecológica e  Conservação. Published by  Elsevier B.V. This is an  open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.pecon.2021.09.002
https://www.perspectecolconserv.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pecon.2021.09.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anneliz.oliveira@gmail.com
mailto:piratelli@ufscar.br
mailto:damaris@zurell.de
mailto:fernandors@ufscar.br
https://doi.org/10.1016/j.pecon.2021.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.E. Oliveira-Silva, A.J. Piratelli, D. Zurell et al. Perspectives in  Ecology and Conservation 20 (2022) 1–8

Introduction

In the last three decades, ecological niche models (hereafter
ENMs, sensu Peterson and Soberón, 2012) have been widely used to
generate predictions of environmental suitability for species based
on the association between known species occurrences and envi-
ronmental conditions of the sites where species occurrences have
been recorded (Araújo and Peterson, 2012). Assuming that climate
is the main factor influencing species distribution at large spatial
extents and coarse data resolutions, most ENM studies on species
range limits have focused on determining species’ climatic require-
ments based on a multivariate space of climatic variables (i.e.
bioclimatic envelope), and leaving aside the effects of non-climatic
drivers (Pearson et al., 2004; Araújo and Peterson, 2012). However,
the inclusion of non-climatic variables such as changes in  vege-
tation cover (Pearson et al., 2004; Reino et al., 2013; Vasconcelos
and Doro, 2016), and land use (Luoto et al., 2007;  Newbold, 2018),
can improve the accuracy of ENMs by  including variables that are
ecologically relevant (but see Thuiller et al., 2004). The combined
effects of land-use and climate change by  2070 are predicted to lead
to an average cumulative loss of 37.9% of species from vertebrate
communities under current policies (Newbold, 2018). Although
ENMs including non-climatic variables seem to  be  a useful tool to
shed light on the potential localities where viable populations of
the target species are likely to be maintained, a paucity of studies
has used it to predict habitat suitability for endemic species with
distinct degrees of habitat dependency (e.g. Marini et al., 2009).

Tropical forests house over half of Earth’s biodiversity and are
among the world’s most threatened terrestrial ecosystems (Malhi
et al., 2014). Loss and fragmentation of natural habitats lead to the
reduction of resources and landscape connectivity, and increase
edge effects that jointly affect species dispersal, colonization, and
extinction (Fahrig, 2003; Gaston et al., 2003; Warren et al., 2001;
Fischer and Lindenmayer, 2007). The Brazilian Atlantic Forest, a
global biodiversity hotspot, has ∼72% of its original area converted
for human use or degraded by  anthropogenic activities (Rezende
et al., 2018). Currently, more than 80% of the Brazilian Atlantic
Forest fragments are <50 ha and protected areas encompass only
9% of the remaining forest (Ribeiro et al., 2009). At the same time,
this region harbors 832 bird species, of which ∼26% are endemic
(BirdLife International, 2018;  Hasui et al., 2018; Vale et al., 2018b),
and highly sensitive to  habitat loss and fragmentation (Uezu et al.,
2005; Anjos, 2006; Martensen et al., 2008,  2012). Reductions in
bird diversity are due in large part to the loss of less resilient
species (i.e. the capacity of a  population to recover from distur-
bance), such as large-bodied species and trophic specialists (e.g.
Uezu et al., 2005; Anjos, 2006), and an increase in stress-tolerant
species typical of open areas (Ribon et al., 2003; Martensen et al.,
2008, 2012). Although these studies have shown that habitat loss
and fragmentation constrain bird species distributions at both local
and regional scales, the extent to  which the effects of habitat loss
constrain species distributions on broad scales (i.e., the geographic
limits of species; Orme et al., 2006) remain poorly explored for
regions other than Europe (e.g. Pearson et al., 2004; Thuiller et al.,
2004; Luoto et al., 2007; Trivinõ et al., 2011; Reino et al., 2013,
2018).

Here, we evaluate how the addition of native vegetation cover
into climate-based ENMs affects the potential distribution ranges
of 36 Atlantic Forest endemic bird species with distinct degrees of
forest dependency (Stotz et al., 1996; BirdLife International, 2018).
The forest dependency concept indicates whether a species tends
to  occupy: (i) well-preserved habitats in  different strata of native
forest formations, exhibiting high dependency; (ii) forest edges
and understory environments, exhibiting medium dependency; or
(iii) anthropogenic mosaics and non-forested landscapes, exhibit-
ing low dependency. This concept is  highly correlated to species

sensitivity to  disturbance reflecting how often a species is  associ-
ated with disturbed or well-preserved forest patches (Stotz et al.,
1996; Alexandrino et al., 2016)  and can be used to link the results
of ENMs to  species’ ecological needs (Marini et al., 2009). We  per-
formed individual ENMs for each bird species considering two
sets of variables: (i) climatic variables only (hereafter climate-only
model); and (ii) climatic variables combined with the percent-
age of native vegetation remnants (hereafter climate–vegetation
model). We  hypothesize that the addition of the vegetation predic-
tor would decrease the predicted range size of forest-dependent
species by limiting their predicted occurrence in  regions harboring
small areas of native vegetation habitats, despite otherwise favor-
able climatic conditions. We  also expect that the importance of the
vegetation predictor would be more pronounced for highly forest-
dependent birds. Understanding the association between species
habitat dependency and model accuracy is  useful to improve con-
servation planning based on species habitat requirements and
habitat specificity (Marini et al., 2009). Therefore, we expect that
habitat suitability forecasting generated by integrative models
might be a  valuable tool to understand the potential effects of  the
loss and fragmentation of natural habitats on the distribution of
endemic bird species in the Atlantic Forest.

Material and methods

Species data

We  used occurrence points of endemic bird species distributed
in 16.599 10 × 10 km resolution UTM cells encompassing the Brazil-
ian Atlantic Forest (domain limits established by the Brazilian
Ministry of Environment and the Brazilian Institute for Geogra-
phy and Statistics; Fig. 1). This resolution is the most relevant
for detecting the influence of land cover in ENMs (Luoto et al.,
2007). Occurrence points per species were compiled from two
different databases: (i) data set on Brazilian Atlantic Forest bird
occurrence (Hasui et al., 2018); and (ii) Global Biodiversity Infor-
mation Facility (https://www.gbif.org/). We  removed from our
data: (i) duplicate occurrence points; (ii) occurrence points in
Argentina and Paraguay because the vegetation layer used herein
is  restricted to Brazil; (iii) imprecise point occurrences (e.g. coor-
dinates assigned to  municipalities); and (iv)  historical points (i.e.
records before 1990, therefore, we evaluated point occurrences
from 1990 to 2017). Based on this curated data, we selected 36
endemic bird species (Table 1) following two  main criteria: (i)
species should have at least 60 georeferenced occurrence points
available; and (ii) to eliminate phylogenetic bias, species should
be preferably from different orders and families. In the end,
our final dataset contains 2160 occurrence points. We  classified
species according to  their forest dependency (high, medium, and
low) based on information gathered from BirdLife International
(2018) and complemented by consultation with experts (Table 1).
From the 36 species evaluated in  this study, eight were classi-
fied as low, 18 as medium, and 10 as high forest dependency
(Table 1). We  followed the updated list of the South American
Classification Committee of the American Ornithological Soci-
ety (http://www.museum.lsu.edu/ Remsen/SACCBaseline.htm)  for
bird nomenclature.

Climatic variables

We  selected climatic variables related to temperature and pre-
cipitation that represent proxies for physiological constraints and
limit species distribution for birds at broad spatial scales (e.g.
Marini et al., 2009; Trivinõ et al., 2011), and capture both the annual
and the seasonal characteristics of the Brazilian Atlantic Forest cli-
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Fig. 1. Percentage of vegetation cover in the Brazilian Atlantic Forest remaining in 2018 (available at  http://mapas.sosma.org.br/dados/). Brazilian Atlantic Forest established
by  the Brazilian Ministry of Environment (MMA)  and the Brazilian Institute for Geography and Statistics (IBGE). Grid resolution of ∼10  km.

matic variations (Oliveira-Filho and Fontes, 2000). We  downloaded
six bioclimatic variables from the WorldClim 2.0 database (Fick and
Hijmans, 2017), at a 5.0  arc-minute spatial resolution: (i) tempera-
ture seasonality (bio4); (ii) maximum temperature of the warmest
month (bio5); (iii) temperature annual range (bio7); (iv) annual
precipitation (bio12); (v) precipitation seasonality (bio15); and (vi)
precipitation of the driest quarter (bio17). We applied a  Pearson’s
correlation test to check for multicollinearity among the biocli-
matic variables. We  removed bio17 from subsequent analyses due
to its high correlation with bio12 (r =  0.75) and bio15 (r = −0.94),
and maintained other climatic variables which correlation ranged
from −0.7 to 0.7, indicating a  low influence of multicollinearity
(Dormann et al., 2013; Fig. S1).

Percentage of native vegetation cover

We  downloaded a shapefile containing information on the total
native vegetation area remaining in 2018 in the Brazilian Atlantic
Forest (http://mapas.sosma.org.br/dados/). The native vegetation
area in the shapefile was  delimited based on orbital images from
the sensor OLI/Landsat 8 at a scale of 1:50,000 (SOS Mata Atlântica
and INPE, 2020). To use the percentage of native vegetation cover in
ENMs, we converted the shapefile into a  grid file and raster format
considering the same resolution used in  this study (Fig. 1).

Ecological niche modeling

All models were built in R v. 4.0 (R  Development Core Team,
2020)  using the SSDM R package (Schmitt et al., 2017). We
performed six models (i.e. three climate-only models and three
climate–vegetation models) for each species using the following
methods: (i) RF – RandomForest, (ii) MaxEnt – Maximum Entropy,

and iii) SVM – Support Vector Machines. We  used the default set-
tings from SSDM package (Schmitt et al., 2017)  that determines: (i)
RF  model with 2500 trees, a  minimum size of terminal nodes equal
one, and the same number of randomly created pseudo-absences
as available presences (Barbet-Massin et al., 2012); (ii) MaxEnt
model fitted on presence-only data and 10,000 randomly gener-
ated pseudo-absence points; and (iii) SVM model with the epsilon
parameter in the insensitive loss function equal 1e-08, three-fold
cross-validation on the training data to assess the quality of the
model, and the same number of randomly created pseudo-absences
as available presences. We  evaluated predictive performance using
the area under curve (AUC) of the receiver operating character-
istic (ROC) (Fielding and Bell, 1997). The AUC (ranging from 0 to
1) represents the probability that, for a  randomly selected set of
observations, the model prediction for a  presence observation will
be higher than the prediction for an absence observation. AUC val-
ues of 0.5  represent a  model no better than random, whereas a
value of 1 indicates perfect model discrimination between pres-
ence and absence records. We used average of AUC  using threefold
cross-validation (two times in the training set and once the evalu-
ation set), repeated ten times, which gives a more robust estimate
of the predictive performance of each model. We  excluded from
subsequent analyses those models with poor performance repre-
sented by AUC lower than 0.75 because they are not discriminatory
enough to  be helpful. Then, to  account for inter-model variability
and reduce uncertainty, we  applied the ensemble of  forecasting
approach to  find a consensus among ENMs (Araújo and New,
2007). More specifically, we used a  weighted average based on AUC
(Schmitt et al., 2017).  This approach has been proven to be more
interpretative than a  single-model analysis. Following Zurell et al.
(2020),  we provide the ODMAP protocol of the modelling process
(Table S2).
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Table  1

Area under the curve (AUC) values for each algorithm considering climate-only (CO) and climate–vegetation (CV) models. Abbreviations are as follows. FD – forest dependency
(BirdLife International, 2018): L = low, M = medium, and H  =  high. RF –  RandomForest, MaxEnt –  Maximum Entropy, and SVM – Support Vector Machines. NA =  not available
(discarded  models -  AUC <  0.75). PSA CO – Predicted suitable area by  climate-only model, and PSA CV – Predicted suitable area by  climate–vegetation model. PSACO/CV (%) –
Percentage of the predicted suitable area of climate-only models relative to climate–vegetation models (PSA CV). Positive PSACO/CV indicates a  larger predicted suitable area
of  climate-only model, negative PSACO/CV indicates a  larger predicted suitable area of climate–vegetation model.

AUC CO/CV Ensemble Predicted suitable area (PSA)

Species FD RF  MaxEnt SVM CO CV PSA CO (km2) PSA CV (km2) PSACO/CV (%)

Aramides saracura M 0.77/0.80 0.76/0.76 0.76/0.8 0.76 0.79 345,096.7 337,986.4 2.06
Brotogeris tirica M 0.84/0.86 0.81/0.84 0.82/0.85 0.83 0.85 298,164.8 192,864.5 35.32
Buteogallus lacernulatus H  0.87/0.88 0.88/0.88 0.84/0.87 0.86 0.88 244,226 228,235.7 6.55
Carpornis cucullata H  0.88/0.91 0.89/0.90 0.89/0.90 0.89 0.91 142,422.9 92,230.89 35.24
Chiroxiphia caudata H  0.75/0.79 0.77/0.76 NA/0.78 0.76 0.78 352,770.3 304,253.3 13.75
Cinclodes pabsti L 0.97/0.98 0.98/0.98 0.98/0.98 0.98 0.98 47,132.75 48,687.11 −3.30
Conopophaga melanops M 0.83/0.85 0.84/0.86 0.84/0.87 0.84 0.86 209,423.1 177,849.8 15.08
Cranioleuca pallida H 0.84/0.86 0.86/0.86 0.85/0.86 0.85 0.86 184,632.1 157,283.4 14.81
Cyanocorax caeruleus H  0.90/0.90 0.90/0.90 0.92/0.90 0.91 0.90 131,511.6 127,349 3.17
Dacnis  nigripes M 0.90/0.91 0.90/0.9 0.88/0.9 0.89 0.91 150,568.9 121,361.1 19.4
Formicivora serrana M 0.87/0.87 0.88/0.89 0.85/0.87 0.87 0.88 227,554.8 194,047 14.73
Herpsilochmus pileatus L 0.97/0.98 0.97/0.97 0.97/0.97 0.97 0.97 71,144.1 71,786.55 −0.90
Malacoptila striata M 0.79/0.8 0.77/0.78 0.79/0.81 0.78 0.80 241,116.1 269,323.9 −11.7
Megascops sanctaecatarinae L 0.90/0.88 0.86/0.87 0.86/0.85 0.87 0.87 268,452.5 270,258.1 −0.67
Melanerpes flavifrons M 0.77/0.78 0.75/0.8 0.79/0.78 0.77 0.79 449,709.4 239,448 46.75
Mionectes rufiventris H 0.79/0.77 0.76/0.76 0.76/0.79 0.77 0.77 515,769.4 465,223.6 9.80
Neopelma aurifrons H  0.82/0.83 0.83/0.83 0.80/0.82 0.82 0.83 292,681.9 269,640.9 7.87
Ortalis  squamata L 0.96/0.95 0.95/0.95 0.95/0.93 0.95 0.95 102,080.7 111,673.5 −9.40
Phacellodomus ferrugineigula L 0.90/0.90 0.90/0.90 0.89/0.89 0.90 0.90 229,123.9 231,544.9 −1.06
Phylloscartes kronei L 0.97/0.97 0.98/0.98 0.96/0.96 0.97 0.97 48,315.81 53,539.54 −10.81
Pionopsitta pileata M 0.78/0.82 0.82/0.84 0.83/0.82 0.81 0.83 278,965.3 227,373.8 18.49
Pseudastur polionotus H  0.82/0.83 0.81/0.82 0.78/0.83 0.8 0.82 226,372.3 202,078 10.73
Pteroglossus bailloni H 0.82/0.81 0.81/0.82 0.82/0.83 0.81 0.82 216,226 229,840.8 −6.30
Pulsatrix koeniswaldiana M 0.83/0.80 0.84/0.83 0.82/0.81 0.83 0.82 226,878.2 213,514.9 5.89
Pyriglena leucoptera M 0.77/0.78 0.76/0.75 0.77/0.77 0.77 0.77 307,575.8 293,399.5 4.61
Pyrrhura frontalis M 0.79/0.78 0.77/0.77 0.78/0.78 0.78 0.78 318,395.5 328,276.2 −3.10
Ramphastos dicolorus M 0.79/0.79 0.78/0.79 0.79/0.80 0.79 0.79 397,903.4 265,288.5 33.33
Ramphocelus bresilius L 0.86/0.83 0.85/0.86 0.82/0.86 0.84 0.85 169,445.1 198,601.4 −17.21
Sporophila frontalis M 0.83/0.85 0.83/0.82 0.85/0.84 0.84 0.84 171,791.9 145,287.8 15.43
Stephanoxis lalandi M 0.84/0.85 0.84/0.84 0.84/0.85 0.84 0.84 145,544.6 147,435.4 −1.30
Strix  hylophila M 0.84/0.83 0.87/0.86 0.83/0.84 0.85 0.84 234,223.1 246,917.1 −5.42
Synallaxis ruficapilla M 0.78/0.77 0.77/0.76 NA/0.79 0.78 0.77 593,211.4 547,842.6 7.65
Tangara  seledon L 0.85/0.87 0.84/0.85 0.85/0.87 0.85 0.86 161,297.6 186,670.4 −15.73
Thalurania glaucopis M 0.81/0.80 0.79/0.79 0.80/0.82 0.8 0.8 258,507.1 244,436.2 5.44
Tinamus  solitarius H  0.84/0.87 0.86/0.87 0.85/0.88 0.85 0.87 940,66.59 128,615.3 −36.73
Veniliornis maculifrons M 0.91/0.89 0.88/0.87 0.86/0.86 0.88 0.88 236,771.7 224,032 5.38

Differences in predicted suitable area between climate-only

and climate–vegetation models

We  created a binary map  from each ensemble (climate-only
and climate–vegetation models) using True Skill Statistic (TSS)
as a threshold that maximizes the sum of sensitivity and speci-
ficity of the ensemble (Schmitt et al., 2017)  and determined
their predicted suitable area (PSA, km2). Then, we calculated
for each species the relative difference in  the PSA of climate-
only models and climate–vegetation models using the following
math:

PSACO/CV = 100
(

COPSA −  CVPSA

COPSA

)

where PSACO/CV is  the percentage of predicted suitable area of
climate-only models (COPSA) that was predicted as suitable area
by climate–vegetation models (CVPSA). Therefore, PSACO/CV mea-
sures the relative range size differences between models. Positive
values indicate that the climate-only model predicted larger suit-
able area and negative values indicate that the climate–vegetation
model predicted larger suitable area. We also overlapped the
binary maps of predicted suitable areas for each species to visu-
alize the areas that are  congruent between predicted models and
areas that differed between climate-only and climate–vegetation
models.

Comparing the difference in  predicted suitable areas

(PSACO/CV)  among forest dependency degrees

We  utilized phylogenetic ANOVA to compare PSACO/CV values
among the three forest dependency groups (low, medium, and
high) using the phytools R  package (Revell, 2012). Phylogenetic
ANOVA controls the fact that  species may  not  represent statistically
independent data and ascertain whether there is an associa-
tion between variation in PSACO/CV values and forest dependency
groups. All resultant p-values were corrected for multiple com-
parisons using a  Bonferroni correction. To perform this approach,
we pruned the time-calibrated tree proposed by Jetz et al. (2012,
https://birdtree.org/) to include the 36 bird species used in our
study.

Results

Overall, modeling procedures provided satisfactory predictions
(AUCco = 0.85 ± 005; AUCcv =  0.86 ± 005) and only two models
generated by SVM had AUC < 0.75 (Table 1). The relative range
size difference varied from -36.73% to 46.75% (mean: 4.62, SD:
17.23; Table 1). We  observed a  significant effect of  species’ for-
est dependency degree on the relative range size differences
(F =  4.62, P = 0.03; Fig. 2). On  average, for species with high and
medium forest dependency climate–vegetation models predicted
lower range sizes. In contrast, for low forest dependency species,
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Fig. 2. (A) Consensus phylogeny (based on Jetz  et al., 2012) indicating the  relationship between the 36 bird species modeled in this study. (B) Relative differences in predicted
suitable area (PSACO/CV) of climate-only (CO) model compared to  climate–vegetation (CV) model. Positive values indicate larger ranges predicted by climate-only model
and  negative values indicate larger ranges predicted by climate–vegetation model. (C) Relative differences in predicted suitable area (PSACO/CV)  according to  species’ forest
dependency. Different letters indicate significant differences in relative range size differences (adjusted p values <  0.05).

climate–vegetation models predicted similar or larger range sizes
than climate-only models. Species with high and medium forest
dependency showed stronger differences in range size predictions
between predictor sets than species with low forest dependency
(Fig. 2). Melanerpes flavifrons (medium forest dependency), Bro-

togeris tirica (medium forest dependency), Carpornis cucullata (high
forest dependency), and Ramphastos dicolorus (medium forest
dependency) had the highest relative range size differences with
climate-only models predicting a  range roughly a  third larger
(46.75%, 35.32%, 35.24%, and 33.33% respectively) than models
including vegetation cover as a predictor. Vegetation cover had
the highest contribution to model output of 16 out of 36 species
and the second-highest contribution of eight species indicating its
importance as a  predictor variable (Table 2). From the climatic vari-
ables, Bio5 (maximum temperature of the warmest month) was
most often selected as most important variable (in 11 out of 36
species).

Discussion

Our results indicate that excluding habitat variables from the
models largely overestimates species range sizes especially for
habitat specialists. Despite the devastating effects of habitat loss
and fragmentation on biodiversity, affecting species’ survival and
promoting range shifts (Fahrig, 2003; Warren et al., 2001;  Jetz et al.,
2007), many species range predictions rely mainly on climate pre-
dictors. This is worrisome because excluding habitat variables from
the models could lead to  overoptimistic predictions of the future
of biodiversity for vulnerable ecosystems such as the Brazilian
Atlantic Forest.

For most of medium and high forest dependent species climate-
only models predicted range sizes up  to 47% larger than models
including vegetation cover as a  predictor. These differences in
range size estimates are alarming as they indicate that climate-only
models may  underestimate potential population losses related to
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Table  2

Percent contribution values of each environmental variable used in the models. Abbreviations are as follows. FD – forest dependency (BirdLife International, 2018): L =  low,
M  = medium, and H =  high. Bio4 =  temperature seasonality; Bio5 =  maximum temperature of the warmest month; Bio7 = temperature annual range; Bio12 =  annual precipi-
tation; Bio15 = precipitation seasonality; and Forest cover =  percentage of vegetation cover in the  Brazilian Atlantic Forest remaining in 2018. In bold, the values with the
greatest  contribution for each species.

FD Bio4 Bio5 Bio7 Bio12 Bio15 Forest cover

Aramides saracura M 11.17 26.93 16.58 16.46 12.27 16.59
Brotogeris tirica M 8.75 13.74 17.32 14.59 12.40 33.20

Buteogallus lacernulatus H 8.69 9.47 25.25 17.83 11.31 27.45

Carpornis cucullata H 8.69 17.08 21.30 11.00 10.90 31.03

Chiroxiphia caudata H 9.85 20.05 16.27 14.13 13.04 26.67

Cinclodes pabsti L 10.61 38.10 16.52 8.52 15.00 11.25
Conopophaga melanops M 8.05 10.71 19.59 19.23 12.10 30.32

Cranioleuca pallida H 9.56 34.11 9.02 9.43 20.67 17.22
Cyanocorax caeruleus H 12.25 14.42 33.85 17.67 11.12 10.69
Dacnis nigripes M 9.90 12.06 21.65 13.18 10.96 32.24

Formicivora serrana M 17.40 18.79 12.06 18.03 15.53 18.19
Herpsilochmus pileatus L 19.01 10.56 18.29 24.47 18.47 9.20
Malacoptila striata M 10.88 20.18 14.35 14.73 16.44 23.42

Megascops sanctaecatarinae L 16.49 28.28 13.54 11.66 15.05 14.98
Melanerpes flavifrons M 10.23 11.90 9.41 13.27 18.04 37.16

Mionectes rufiventris H 12.15 30.28 9.40 14.90 11.88 21.38
Neopelma aurifrons H 13.64 11.61 21.70 12.29 22.65 18.12
Ortalis squamata L 17.74 14.64 37.65 9.95 10.36 9.66
Phacellodomus ferrugineigula L 11.61 26.00 9.11 18.66 23.57 11.06
Phylloscartes kronei L  15.05 21.04 32.06 10.82 11.26 9.77
Pionopsitta pileata M 9.73 21.05 13.29 18.79 11.76 25.38

Pseudastur polionotus H 8.42 18.10 18.89 14.38 10.98 29.23

Pteroglossus bailloni H 10.00 22.14 11.44 13.27 18.31 24.83

Pulsatrix koeniswaldiana M 10.41 17.63 23.37 12.91 16.17 19.52
Pyriglena leucoptera M 9.29 16.46 23.33 11.24 11.06 28.62

Pyrrhura frontalis M 12.30 22.00 12.33 13.34 23.43 16.60
Ramphastos dicolorus M 9.13 27.02 11.99 14.64 12.88 24.35
Ramphocelus bresilius L 13.07 12.49 18.98 20.20 18.82 16.44
Sporophila frontalis M 10.48 19.31 18.52 12.29 17.64 21.75

Stephanoxis lalandi M 11.45 31.47 8.66 14.54 15.29 18.59
Strix hylophila M 11.74 38.10 12.09 11.44 12.15 14.48
Synallaxis ruficapilla M 9.57 24.34 13.20 14.99 12.59 25.31

Tangara seledon L 8.58 16.51 20.17 14.29 14.51 25.93

Thalurania glaucopis M 8.91 17.23 22.84 16.99 11.89 22.14
Tinamus solitarius H 9.33 11.24 21.44 12.10 11.85 34.05

Veniliornis maculifrons M 16.50 21.08 13.00 17.30 18.57 13.54

forest degradation. Previous studies have indicated that  if  human
activities continue to degrade Brazilian Atlantic Forest cover likely
large populations will be lost at local scales (Ribon et al., 2003;
Martensen et al., 2012; Galetti et al., 2013), and could even lead
to the extirpation of bird species with high and medium forest
dependency (e.g. Jetz et al., 2007; Urban, 2015). For example, pro-
jections of land cover conversion by  the year 2100 indicate that
birds may  lose more than half of their range size in  tropical and
subtropical regions, and are thus, particularly vulnerable to extinc-
tion (Jetz et al., 2007). Frugivorous birds in  Atlantic Forest are
affected by patch size reduction with large-sized seed-dispersers
being extirpated from small forest fragments (Galetti et al., 2013;
Bovo et al., 2018; Emer et al., 2018). This scenario is  worrying
because it would catalyze the homogenization replacing species
with restricted ecological requirements by  stress-tolerant species
typical of open areas, resulting in decreased beta diversity and
biotic impoverishment (McKinney and Lockwood, 1999; Lôbo et al.,
2011). Even if species with medium and high forest dependency do
not become extinct, they probably will have their geographic range
area reduced. Consequently, other pressures related to  small popu-
lation sizes, low connectivity between populations, and inbreeding
will make the long-term persistence of these species extremely
difficult (Metzger et al., 2009).

Previous studies evaluating whether habitat loss and fragmenta-
tion impact species distribution on a broad scale have found mixed
results (Thuiller et al., 2004; Luoto et al., 2007; Trivinõ et al., 2011;
Reino et al., 2013; Vasconcelos and Doro, 2016; Reino et al., 2018).
Some studies showed that including vegetation cover (grid resolu-
tion  10 × 10 km)  improves model predictions for frogs in  Atlantic

Forest (Vasconcelos and Doro, 2016) and some birds in  the Iberian
Peninsula (Trivinõ et al., 2011; Reino et al., 2013). In  contrast,
Thuiller et al. (2004) found that the addition of vegetation cover to
bioclimatic models (grid resolution 50 × 50 km)  has not  improved
the predictive accuracy of birds in Europe. Partly these contradic-
tory results can be explained by differences in  spatial resolution
(Luoto et al., 2007). Adding to this discussion, our results clearly
emphasize the importance of habitat specificity of species as a  rea-
son for mixed results (Warren et al., 2001; Trivinõ et al., 2011;
Reino et al., 2018). Species often respond to  environmental changes
in  different ways owing to intrinsic life-history traits and habitat
requirements (Warren et al., 2001; Maggini et al., 2014; Trivinõ
et al., 2011). The effects of habitat fragmentation on birds might
vary according to intrinsic characteristics of the species, such as
forest dependency, sensitivity to  disturbances, and dispersal limi-
tations (Galetti et al., 2013; Maggini et al., 2014; Bovo et al., 2018;
Reino et al., 2018). For example, except for Tangara seledon, vegeta-
tion cover was  not ranked among the first three predictor variables
contributing to  model output of bird species with low forest depen-
dency. Furthermore, climate–vegetation models predicted range
sizes similar to those predicted by climate-only models indicat-
ing that other factors such as physiological constraints or dispersal
limitation rather than vegetation cover might delimit the spatial
distribution of species with low forest dependency. Taken together,
our results indicate that the addition of vegetation cover in ENMs
might provide robust predictions when modelling geographic
species distribution at fine resolutions (10 × 10 km)  and discrim-
inating species-specific responses based on their life-history traits.
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We  recognize that, besides climate conditions and land-use
changes, there are other factors, such as biotic interactions and
poaching, affecting bird range distributions (Uezu et al., 2005;
Hasui et al., 2017; Zurell, 2017; Bovo et al., 2018). Working with
the native vegetation cover without incorporating other landscape
metrics into the model (e.g. patch size, format, connectivity among
patches, habitat quality, and surrounding landscape matrix) might
also mask the effect of other drivers of species’ range shifts (Fahrig,
2003; Ribon et al., 2003; Martensen et al., 2012; Hasui et al., 2017).
Furthermore, we did not consider the adaptive responses of differ-
ent populations to environmental change. Previous studies argue
that the sensitivity to fragmentation and habitat loss may  vary
geographically among different populations within species (Anjos
et al., 2010; Orme et al., 2019; Williams and Newbold, 2021). For
example, Orme et al. (2019) found that populations of Atlantic For-
est birds are more sensitive to deforestation when near their range
edge, which generates a differential effect of habitat fragmentation
between populations. Stephanoxis lalandi (Trochilidae) is  classified
as having a medium forest dependency and still it showed the low-
est relative range size differences between models and compared
with other medium forest dependency species. Populations of this
species have been reported more often living within anthropogenic
landscapes during the last decades (Hasui et al., 2018) indicating
large niche breadth or  misclassification (Alexandrino et al., 2016).
In the future, plasticity and behavioral adaptations in habitat pref-
erences should receive more attention. For last, 14 of the 36 bird
species had a small extent of their geographical ranges limited
due to exclusion of occurrence points from the Atlantic Forest of
Argentina and Paraguay. These exclusions can generate truncated
niches due to incomplete representation of environmental condi-
tions generating inaccurate extrapolations (Peterson et al., 2018).
Although we cannot discard that excluding occurrence points out-
side Brazilian Atlantic Forest could affect our ENM predictions, we
consider that niche truncation is not affecting our  results because
predictions were based on environmental conditions under which
the model was calibrated and they were not  used for extrapola-
tion to new places or environments outside Brazilian Atlantic Forest
(Zurell et al., 2012)

Considering that climate change and human land-use changes
are the two main factors causing variation in  range shifts,
climate–vegetation models would provide useful information to
support quick decisions, such as conservation planning for species
with specific ecological requirements, or guidelines to  identify pri-
ority areas for forest conservation in  modified landscape (Jetz et al.,
2007; Guisan et al., 2013; Vale et al., 2018a). Therefore, understand-
ing how native vegetation cover affects the potential distribution
ranges of species could be particularly useful to the threatened
biodiversity in the Brazilian Atlantic Forest where information on
broad-scale species distribution patterns is  still limited compared
to the effects of native vegetation cover on local and regional
scales.
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fragments of the Viç osa region, southeastern Brazil. Conserv. Biol. 17,
1827–1839, http://dx.doi.org/10.1111/j.1523-1739.2003.00377.x.

Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., Birnbaum, P.,  2017. SSDM: an  r
package to predict distribution of species richness and composition based on
stacked species distribution models. Methods Ecol. Evol. 8,  1795–1803,
http://dx.doi.org/10.1111/2041-210X.12841.

SOS  Mata Atlântica, INPE, Available at
http://mapas.sosma.org.br/site media/download/2020 Atlas Mata Atlantica
2018-2019 relatorio tecnico final.pdf, 2020.

Stotz, D.F., Fitzpatrick, J.W., Parker III,  T.A., Moskovits, D.K., 1996. Neotropical
Birds: Ecology and Conservation. University of Chicago Press, Chicago.

Thuiller, W.,  Araújo, M.B., Lavorel, S., 2004. Do we need land-cover data to model
species distributions in Europe? J. Biogeogr. 31, 353–361,
http://dx.doi.org/10.1046/j.0305-0270.2003.00991.x.

Trivinõ, M.,  Thuiller, W.,  Cabeza, M.,  Hickler, T., Araújo, M.B., 2011. The
contribution of vegetation and landscape configuration for predicting
environmental change impacts on Iberian birds. PLoS One 6,  e29373,
http://dx.doi.org/10.1371/journal.pone.0029373.

Uezu, A., Metzger, J.P., Vielliard, J.M.E., 2005. Effects of structural and functional
connectivity and patch size  on  the abundance of seven Atlantic Forest bird
species. Biol. Conserv. 123, 507–519,
http://dx.doi.org/10.1016/j.biocon.2005.01.001.

Urban, M.C., 2015. Accelerating extinction risk from climate change. Science 348,
571–573, http://dx.doi.org/10.1126/science.aaa4984.

Vale, M.M., Souza, T.V., Alves, M.A.S., Crouzeilles, R., 2018a. Planning protected
areas  network that are relevant today and under future climate change is
possible: the case of Atlantic Forest endemic birds. PeerJ 6,  e4689,
http://dx.doi.org/10.7717/peerj.4689.

Vale, M.M., Tourinho, L., Lorini, M.L., Rajão, H., Figueiredo, M.S.L., 2018b. Endemic
birds of the Atlantic Forest: traits, conservation status, and patterns of
biodiversity. J. Field Ornithol. 89, 193–206,
http://dx.doi.org/10.1111/jofo.12256.

Vasconcelos, T.S., Doro, J.L.P., 2016. Assessing how habitat loss restricts the
geographic range of Neotropical anurans. Ecol. Res. 31, 913–921,
http://dx.doi.org/10.1007/s11284-016-1401-8.

Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R.,  Huntley, B., Roy, D.B., Telfer,
J.G., Jeffcoate, S., Harding, P.,  Jeffcoate, G., Willis, S.G., Greatorex-Davies, J.N.,
Moss, D., Thomas, C.D.,  2001. Rapid responses of British butterflies to opposing
forces of climate and habitat change. Nature 414, 65–69,
http://dx.doi.org/10.1038/35102054.

Williams, J.J., Newlbod, T., 2021. Vertebrate responses to human land use are
influenced by  their proximity to  climatic tolerance limits. Divers. Distrib. 27,
1308–1323, http://dx.doi.org/10.1111/ddi.13282.

and interspecific interactions into bird distribution models. J.  Avian Biol. 48,
1505–1516, h.tp://dx.doi.org/10.1111/javl et al., 2012Zurell, D.,  Elith, J.,
Schröder, B., 2012. Predicting to  new environments: tools for visualizing
model behaviour and impacts on mapped distributions. Divers. Distrib. 18,
628–634, http://dx.doi.org/10.1111/j.1472-4642.2012.00887.x.

Zurell,  D.,  Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G.,
Feng,  X.,  Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitão, P.J., Park,
D.S.,  Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M.,
Thuiller, W.,  Yates, K.L.,  Zimmermann, N.E., Merow, C., 2020. A standard
protocol for reporting species distribution models. Ecography 43, 1261–1277,
http://dx.doi.org/10.1111/ecog.04960.

8

dx.doi.org/10.1126/science.1233774
dx.doi.org/10.1098/rspb.2002.2303
dx.doi.org/10.1111/ele.12189
dx.doi.org/10.1007/s11676-017-0388-5
dx.doi.org/10.1002/ecy.2119
dx.doi.org/10.1371/journal.pbio.0050157
dx.doi.org/10.1038/nature11631
dx.doi.org/10.1111/j.1472-4642.2010.00739.x
dx.doi.org/10.1111/j.1466-8238.2006.00262.x
dx.doi.org/10.1111/ddi.12207
dx.doi.org/10.1146/annurev-environ-030713-155141
dx.doi.org/10.2307/40419195
dx.doi.org/10.1016/j.biocon.2008.06.008
dx.doi.org/10.1111/j.1523-1739.2012.01940.x
dx.doi.org/10.1016/S0169-5347(99)01679-1
dx.doi.org/10.1016/j.biocon.2009.01.033
dx.doi.org/10.1098/rspb.2018.0792
dx.doi.org/10.1111/j.1744-7429.2000.tb00619.x
dx.doi.org/10.1371/journal.pbio.0040208
dx.doi.org/10.1038/s41559-019-0889-z
dx.doi.org/10.1111/j.0906-7590.2004.03740.x
dx.doi.org/10.4322/natcon.2012.019
dx.doi.org/10.1111/nyas.13873
http://www.Rproject.org/
dx.doi.org/10.1111/ddi.12019
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0200
dx.doi.org/10.1111/j.2041-210X.2011.00169.x
dx.doi.org/10.1016/j.pecon.2018.10.002
dx.doi.org/10.1016/j.biocon.2009.02.021
dx.doi.org/10.1111/j.1523-1739.2003.00377.x
dx.doi.org/10.1111/2041-210X.12841
http://mapas.sosma.org.br/site_media/download/2020_Atlas_Mata_Atlantica_2018-2019_relatorio_tecnico_final.pdf
http://mapas.sosma.org.br/site_media/download/2020_Atlas_Mata_Atlantica_2018-2019_relatorio_tecnico_final.pdf
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
http://refhub.elsevier.com/S2530-0644(21)00077-8/sbref0235
dx.doi.org/10.1046/j.0305-0270.2003.00991.x
dx.doi.org/10.1371/journal.pone.0029373
dx.doi.org/10.1016/j.biocon.2005.01.001
dx.doi.org/10.1126/science.aaa4984
dx.doi.org/10.7717/peerj.4689
dx.doi.org/10.1111/jofo.12256
dx.doi.org/10.1007/s11284-016-1401-8
dx.doi.org/10.1038/35102054
dx.doi.org/10.1111/ddi.13282
dx.doi.org/10.1111/jav.01225
dx.doi.org/10.1111/j.1472-4642.2012.00887.x
dx.doi.org/10.1111/ecog.04960

	Vegetation cover restricts habitat suitability predictions of endemic Brazilian Atlantic Forest birds
	Introduction
	Material and methods
	Species data
	Climatic variables
	Percentage of native vegetation cover
	Ecological niche modeling

	Differences in predicted suitable area between climate-only and climatevegetation models
	Comparing the difference in predicted suitable areas (PSACO/CV) among forest dependency degrees
	Results
	Discussion
	Data accessibility
	Declaration of interests
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


