Corresponding author at: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia.
was read the article
array:23 [ "pii" => "S2530064419302111" "issn" => "25300644" "doi" => "10.1016/j.pecon.2019.11.002" "estado" => "S300" "fechaPublicacion" => "2019-10-01" "aid" => "115" "copyright" => "Associação Brasileira de Ciência Ecológica e Conservação" "copyrightAnyo" => "2019" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Perspectives in Ecology and Conservation. 2019;17:206-19" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 138 "formatos" => array:3 [ "EPUB" => 20 "HTML" => 53 "PDF" => 65 ] ] "itemAnterior" => array:19 [ "pii" => "S2530064419300100" "issn" => "25300644" "doi" => "10.1016/j.pecon.2019.09.002" "estado" => "S300" "fechaPublicacion" => "2019-10-01" "aid" => "113" "copyright" => "Associação Brasileira de Ciência Ecológica e Conservação" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Perspectives in Ecology and Conservation. 2019;17:201-5" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 245 "formatos" => array:3 [ "EPUB" => 37 "HTML" => 149 "PDF" => 59 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Policy Forums</span>" "titulo" => "Balancing land sharing and sparing approaches to promote forest and landscape restoration in agricultural landscapes: Land approaches for forest landscape restoration" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "201" "paginaFinal" => "205" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1872 "Ancho" => 3008 "Tamanyo" => 489831 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Four critical questions to support decisions on forest and landscape restoration. The questions are illustrated with examples of responses that hint forces pulling FLR implementation under the two endpoints of the land sharing/sparing gradient.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Paula Meli, José María Rey-Benayas, Pedro H.S. Brancalion" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Paula" "apellidos" => "Meli" ] 1 => array:2 [ "nombre" => "José María" "apellidos" => "Rey-Benayas" ] 2 => array:2 [ "nombre" => "Pedro H.S." "apellidos" => "Brancalion" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Highlights" "clase" => "author-highlights" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0010" class="elsevierStylePara elsevierViewall">Land sharing/sparing approaches offer interdependent and complementary opportunities for Forest and Landscape Restoration.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0015" class="elsevierStylePara elsevierViewall">Landscape configuration and governance issues drive the focus, forest types, and location of the restorative interventions.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">•</span><p id="par0020" class="elsevierStylePara elsevierViewall">Sharing/sparing opportunities should consider the social context and a multi-stakeholder process.</p></li></ul></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2530064419300100?idApp=UINPBA00006K" "url" => "/25300644/0000001700000004/v1_201912172122/S2530064419300100/v1_201912172122/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Research Letters</span>" "titulo" => "Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "206" "paginaFinal" => "219" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "William José Agudelo-Hz, Nicolás Urbina-Cardona, Dolors Armenteras-Pascual" "autores" => array:3 [ 0 => array:4 [ "nombre" => "William José" "apellidos" => "Agudelo-Hz" "email" => array:1 [ 0 => "agudelowj@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Nicolás" "apellidos" => "Urbina-Cardona" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Dolors" "apellidos" => "Armenteras-Pascual" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Biología, Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas -ECOLMOD-, Bogotá, Colombia" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author at: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0040" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 922 "Ancho" => 1333 "Tamanyo" => 122231 ] ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0025" class="elsevierStylePara elsevierViewall">Climate and land-use change, affect aspects such as abundance, phenology, and geographic distributional ranges of species, leading to significant alterations in global biodiversity (<a class="elsevierStyleCrossRef" href="#bib0390">Newbold, 2018</a>; <a class="elsevierStyleCrossRef" href="#bib0435">Pereira et al., 2010</a>; <a class="elsevierStyleCrossRef" href="#bib0500">Sala et al., 2000</a>). These factors of environmental change deteriorate ecosystems, produce population losses, and increase the extinction rates of species, putting at risk the environmental services that biodiversity offers to human well-being (<a class="elsevierStyleCrossRef" href="#bib0170">Díaz et al., 2005</a>). Climate is considered one of the most important factors shaping current patterns of biodiversity on the planet (<a class="elsevierStyleCrossRef" href="#bib0155">Currie et al., 2004</a>; <a class="elsevierStyleCrossRef" href="#bib0280">Hawkins et al., 2003</a>). However, on a regional scale, the availability of suitable habitat in the landscape is one of the most important variables in species composition and richness (<a class="elsevierStyleCrossRef" href="#bib0200">Fahrig, 2003</a>; <a class="elsevierStyleCrossRef" href="#bib0270">Hanski, 2011</a>).</p><p id="par0030" class="elsevierStylePara elsevierViewall">The conversion of large natural areas to land for crops, pasture and urban infrastructure is considered one of the most important factors in the transformation of terrestrial ecosystems in modern times, generating loss and habitat fragmentation for species (<a class="elsevierStyleCrossRef" href="#bib0025">Armenteras et al., 2003</a>; <a class="elsevierStyleCrossRef" href="#bib0395">Newbold et al., 2015</a>). Globally 70% of amphibian species are considered threatened by landscape transformation (IUCN, 2019). On the other hand, the climate has played a major role in the processes of extinction and speciation (<a class="elsevierStyleCrossRef" href="#bib0300">Hutter et al., 2017</a>) However, the increase in greenhouse gas emissions has caused anthropogenic climate change that is accelerating extinction events (<a class="elsevierStyleCrossRef" href="#bib0040">Barnosky et al., 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0175">Diffenbaugh & Field, 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0570">Urban, 2015</a>). Climate change and land-use change challenge biodiversity conservation actions, and understanding of the future effects of these change is urgent for alerting decision-makers and implementing early conservation measures (<a class="elsevierStyleCrossRef" href="#bib0445">Peterson et al., 2003</a>; <a class="elsevierStyleCrossRef" href="#bib0580">Visconti et al., 2016</a>).</p><p id="par0035" class="elsevierStylePara elsevierViewall">Climate modeling has made significant progress in improving climate change scenarios, allowing a better understanding of their effects on biodiversity and ecosystems(<a class="elsevierStyleCrossRef" href="#bib0275">Harris et al., 2014</a>). Despite progress in modeling land-use change, most assessments have neglected its impacts on species (<a class="elsevierStyleCrossRef" href="#bib0525">Sirami et al., 2017</a>; <a class="elsevierStyleCrossRef" href="#bib0565">Titeux et al., 2017</a>). Land-use change scenarios show that natural habitats will continue to be degraded or destroyed by crops and infrastructure with negative impacts on local and global biodiversity (<a class="elsevierStyleCrossRef" href="#bib0135">Chaudhary and Mooers, 2018</a>; <a class="elsevierStyleCrossRef" href="#bib0395">Newbold et al., 2015</a>), especially on amphibians and reptiles (<a class="elsevierStyleCrossRef" href="#bib0090">Böhm et al., 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0130">Catenazzi, 2015</a>). Therefore, including both factors in the assessment of the future of biodiversity is important, because the combined effect of climate change and land-use change considerably jeopardize the survival of species (<a class="elsevierStyleCrossRef" href="#bib0175">Diffenbaugh & Field, 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0410">Oliver & Morecroft, 2014</a>).</p><p id="par0040" class="elsevierStylePara elsevierViewall">One of the most commonly used approaches for assessing the effects of climate change on the geographic ranges of species are species distributional models (SDM) (<a class="elsevierStyleCrossRef" href="#bib0185">Elith et al., 2010</a>). The SDM allows the exploration of appropriate environmental conditions, estimating current potential distributions and projecting them into future environmental conditions using a broad array of statistical learning methods associating georeferenced observations of a biotic response (abundance, presence) variable with a set of explanatory variables of biological relevance for the species (<a class="elsevierStyleCrossRef" href="#bib0190">Elith & Leathwick, 2009</a>, <a class="elsevierStyleCrossRef" href="#bib0230">Franklin, 2013</a>). Current and future distributional models combined with information regarding current and projected remaining land cover due to land-use change have the advantage of spatially locating both factors and estimating potential change in suitable extent of habitat for the species of interest (<a class="elsevierStyleCrossRef" href="#bib0225">Fouquet et al., 2010</a>; <a class="elsevierStyleCrossRef" href="#bib0410">Oliver & Morecroft, 2014</a>). For many species, the combination of these two factors is important for their survival. Evaluating the combined effect of the forecasts of both models allows us to discard areas without adequate habitat conditions, i.e., regions that may maintain stable climatic or habitat conditions, but where the natural cover or climate has a high probability of suffering negative changes; however, it is necessary to use adequate metrics that allow us to link the spatial changes of both factors with the risk of extinction..</p><p id="par0045" class="elsevierStylePara elsevierViewall">The area of occupancy (AOO), and extent of suitable habitat are spatial traits used in the IUCN Red List Assessment to estimate extinction risk, based on changes in geographic ranges (criteria B) or as an indirect measure of population size decline (criteria A) (IUCN Standards and Petitions Subcommittee, 2017). The AOO is a spatial trait specific to each species that tends to be better correlated with population size, and it provides an accurate estimate of extinction risk (<a class="elsevierStyleCrossRef" href="#bib0105">Breiner et al., 2017</a>; <a class="elsevierStyleCrossRef" href="#bib0245">Gaston & Fuller, 2009</a>; <a class="elsevierStyleCrossRef" href="#bib0325">Keith et al., 2018</a>; <a class="elsevierStyleCrossRef" href="#bib0375">Murray et al., 2017</a>). The AOO has proven useful for capturing changes in species ranges in climate change risk assessments (<a class="elsevierStyleCrossRef" href="#bib0105">Breiner et al., 2017</a>; <a class="elsevierStyleCrossRef" href="#bib0165">Di Marco et al., 2015</a>,; <a class="elsevierStyleCrossRef" href="#bib0430">Pearson et al., 2014</a>). In spatially explicit scenarios, the AOO has great potential for capturing the local habitat modifications due to the combined effects of climate change and especially land-use change (<a class="elsevierStyleCrossRef" href="#bib0245">Gaston & Fuller, 2009</a>). It is a factor that operates at the landscape scale, affecting the habitat and the area of occupancy of species (<a class="elsevierStyleCrossRef" href="#bib0250">Grant et al., 2016</a>; <a class="elsevierStyleCrossRef" href="#bib0325">Keith et al., 2018</a>).</p><p id="par0050" class="elsevierStylePara elsevierViewall">For Andean amphibians, climate is a key adaptative factor that acts as a barrier that limits dispersion and favors speciation, producing a high turnover of species in the different altitudinal bands (<a class="elsevierStyleCrossRef" href="#bib0080">Bernal & Lynch, 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0385">Navas, 2006</a>). Neotropical amphibians are considered the most sensitive to climate change of any group of vertebrates (<a class="elsevierStyleCrossRef" href="#bib0215">Foden et al., 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0340">Lawler et al., 2009</a>; <a class="elsevierStyleCrossRef" href="#bib0475">Raxworthy et al., 2008</a>) and one of the groups most threatened by habitat loss, with a high percentage of species at risk of extinction (<a class="elsevierStyleCrossRef" href="#bib0130">Catenazzi, 2015</a>; <a class="elsevierStyleCrossRef" href="#bib0545">Stuart et al., 2008</a>). Habitat suitable availability is another key factor for the survival and amphibian conservation (<a class="elsevierStyleCrossRef" href="#bib0160">Cushman, 2006</a>). For instance, local habitat modification has been found to be an important extinction factor in species with narrow distribution ranges and directly developed larvae (<a class="elsevierStyleCrossRef" href="#bib0400">Nowakowski et al., 2017</a>). On the other hand, in amphibian species with aquatic larvae, habitat division affects the dispersion of juveniles towards growth and reproduction habitats, increasing the risk of extinction (<a class="elsevierStyleCrossRef" href="#bib0065">Becker et al., 2007</a>).</p><p id="par0055" class="elsevierStylePara elsevierViewall">In the Andes region, few studies have evaluated the combined effects of climate and land-use change on amphibians (<a class="elsevierStyleCrossRef" href="#bib0035">Báez et al., 2016</a>). Land-use trends in the Colombian Andes indicate that paramos ecosystems, as well as Andean and sub-Andean forests, will continue to be transformed (<a class="elsevierStyleCrossRef" href="#bib0485">Rodríguez Eraso et al., 2013</a>). Climate change scenarios project that the average annual temperature will increase in the range of +0.77 to 0.88<span class="elsevierStyleHsp" style=""></span>°C for the period 2011 - 2040, and between +1.42 to 1.66<span class="elsevierStyleHsp" style=""></span>°C for the period 2041 – 2070 (<a class="elsevierStyleCrossRef" href="#bib0305">IDEAM, 2015</a>). In species with low dispersal capacities, such as amphibians, these factors of change can increase the risk of extinction (<a class="elsevierStyleCrossRef" href="#bib0160">Cushman, 2006</a>) Thus, our objectives are as follow: (a) to evaluate the potential effects of both climate and land-use on the extent of suitable habitat of a set of species of Andean anurans; (b) to assess the loss of area of occupancy (AOO) based on the availability of habitat suitable; and (c) to estimate the risk of extinction according to the percentages of loss of the extent of habitat loss and AOO, using a multi-stage analysis of climate and land-use change. The inclusion of a spatial trait related to population size might improve signal responses to the combined effects of climate and land use change in a region with high diversity, poor information about species population trends, and a high rate of transformation of their natural ecosystems (<a class="elsevierStyleCrossRef" href="#bib0260">Hannah, 2012</a>; <a class="elsevierStyleCrossRef" href="#bib0485">Rodríguez Eraso et al., 2013</a>). This information is key to understanding the perspective of extinction risk that is faced by the diversity of endemic anurans in the Andean region in different scenarios of environmental change.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Material and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Study area</span><p id="par0060" class="elsevierStylePara elsevierViewall">The World Wildlife Fund (WWF 1997) ranks the northern Andes ecoregion among the 200 priority sites for the conservation of global biodiversity. At the South American level, the Andean region of Colombia is among the most critical conservation priorities, given the uniqueness of its biodiversity and the degree of threat it faces from its low representation in protected areas (<a class="elsevierStyleCrossRef" href="#bib0060">Bax & Francesconi, 2019</a>). The Colombian Andes covers an area of approximately 287,720<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> with three independent mountain ranges that diverge from the south to the north of the country: the Cordillera Occidental, the Cordillera Central and the Cordillera Oriental. These cordilleras (or mountain ranges) are separated by the valleys of the Magdalena and Cauca rivers. Each mountain range has its own climatic, geological and structural characteristics (<a class="elsevierStyleCrossRef" href="#bib0485">Rodríguez Eraso et al., 2013</a>)·. The Andes region has been proposed as a candidate for the category of "biodiversity hotspot" for conservation, considering its exceptional number of endemic species in both vertebrates and plants (<a class="elsevierStyleCrossRef" href="#bib0110">Brooks et al., 2002</a>; <a class="elsevierStyleCrossRef" href="#bib0380">Myers et al., 2000</a>).</p><p id="par0065" class="elsevierStylePara elsevierViewall">In Colombia, Neotropical amphibians reach one of the highest diversities recorded for any group of vertebrates (<a class="elsevierStyleCrossRef" href="#bib0380">Myers et al., 2000</a>; <a class="elsevierStyleCrossRef" href="#bib0545">Stuart et al., 2008</a>, <a class="elsevierStyleCrossRef" href="#bib0550">2004</a>). In the Andean region of Colombia, it is estimated that there are around 477 anuran species of which more than 60% are endemic (<a class="elsevierStyleCrossRef" href="#bib0030">Armesto & Señaris, 2017</a>; <a class="elsevierStyleCrossRef" href="#bib0075">Bernal & Lynch, 2008</a>). In the Andes, amphibian diversity finds its highest level in cloud forests and in intermediate elevations. The rain frogs of the genus <span class="elsevierStyleItalic">Pristimantis</span> and glass frogs (Centrolenidae) are the most representative groups of Andean anurans (<a class="elsevierStyleCrossRef" href="#bib0125">Castroviejo-Fisher et al., 2014</a>; <a class="elsevierStyleCrossRef" href="#bib0365">Meza-Joya & Torres, 2016</a>).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Species records and occurrence data</span><p id="par0070" class="elsevierStylePara elsevierViewall">We modeled the potential distribution for 30 species of anurans, grouped into 4 families: Bufonidae (4 sp.); Centrolenidae (2 sp.); Craugastoridae (22 sp.), and Hylidae (2 sp.); and 10 genera (<span class="elsevierStyleItalic">Atelopus</span>, <span class="elsevierStyleItalic">Rhinella</span>, <span class="elsevierStyleItalic">Osornophryne</span>, <span class="elsevierStyleItalic">Centrolene</span>, <span class="elsevierStyleItalic">Nyphagus</span>, <span class="elsevierStyleItalic">Hypodactylus</span>, <span class="elsevierStyleItalic">Pristimantis</span>, <span class="elsevierStyleItalic">Tachiramantis</span>, <span class="elsevierStyleItalic">Dendropsophus</span> and <span class="elsevierStyleItalic">Colomascirtus</span>). The number of species represents 6.7% of the anuran species richness (approximately 447 spp) reported for the Colombia Andes. A total of 37,600 records of occurrence were obtained for the Andean distribution of anuran species. The process for the selection of the species included the following criteria: 1) species endemic to Colombia; 2) altitudinal limit of distribution ≥1000<span class="elsevierStyleHsp" style=""></span>m.a.s.l.(<a class="elsevierStyleCrossRef" href="#bib0005">Acosta-Galvis, 2015</a>; <a class="elsevierStyleCrossRef" href="#bib0075">Bernal and Lynch, 2008</a>) 3) species whose specific habitats are sub-Andean forests (1000-2000<span class="elsevierStyleHsp" style=""></span>m.a.s.l), Andean forest (2000-3000<span class="elsevierStyleHsp" style=""></span>m.a.s.l), and paramo ecosystem, (>3000<span class="elsevierStyleHsp" style=""></span>m.a.s.l) (<a class="elsevierStyleCrossRef" href="#bib0490">Rodríguez et al., 2006</a>) (<span class="elsevierStyleItalic">see Supporting Information Appendix S1 Pre-processing of presence data and Species List</span> Table <span class="elsevierStyleItalic">S1</span>).</p><p id="par0075" class="elsevierStylePara elsevierViewall">The occurrence data were obtained from four sources of information: a) records from amphibian collections: Instituto de Ciencias Naturales-Universidad Nacional de Colombia and MHUA-Museo de Herpetología de la Universidad de Antioquía; b) biological information records: GBIF (<a href="http://www.gbif.org">www.gbif.org</a>) and iNat (<a href="http://www.inaturalist.org">www.inaturalist.org</a>); c) unpublished records provided by the IAvH (Alexander von Humbolt Institute) of Colombia obtained during biodiversity studies for the delimitation of páramo ecosystems; and d) a review of the bibliography of taxonomy and ecological studies of anurans carried out in the study areas where frogs were collected or sighted (e.g., <a class="elsevierStyleCrossRef" href="#bib0315">Issacs-Cubides & Urbina-Cardona, 2011</a>)·</p><p id="par0080" class="elsevierStylePara elsevierViewall">To avoid over-adjustment in species distribution models and spatial autocorrelation derived from field data collection techniques, a 4<span class="elsevierStyleHsp" style=""></span>km spatial filter between occurrence points was performed (<a class="elsevierStyleCrossRef" href="#bib0095">Boria et al., 2014</a>; <a class="elsevierStyleCrossRef" href="#bib0335">Kramer-schadt et al., 2013</a>) using the spThin package v.0.1.0 (<a class="elsevierStyleCrossRef" href="#bib0010">Aiello-Lammens et al., 2015</a>) in R (Core team 2018). Finally, a database with 468 occurrence points was obtained. The number of occurrences ranged from 8-25 with an average of 14.6 localities per species.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Climate data and scenarios</span><p id="par0085" class="elsevierStylePara elsevierViewall">We correlated a set of climate variables with occurrence data to explore new environmental areas, based on current and future climatic conditions. For current conditions, we obtained 19 bioclimatic variables from the WORLDCLIM database v.1.4 (<a href="http://www.worldclim.org">www.worldclim.org</a>) (<a class="elsevierStyleCrossRef" href="#bib0295">Hijmans et al., 2005</a>) at a resolution of 0.30-second arcs, equivalent to a pixel size of ∼1<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> near the equator. (<span class="elsevierStyleItalic">see the complete list of variables in Supporting Information</span> Table <span class="elsevierStyleItalic">S2</span>). These variables consisted of interpolated climatic layers, constructed from climatic data, collected from weather stations around the world between 1960-2000 (<a class="elsevierStyleCrossRef" href="#bib0295">Hijmans et al., 2005</a>).</p><p id="par0090" class="elsevierStylePara elsevierViewall">To evaluate the effects of future climate change, we selected two climate change scenarios, denominated Representative Concentration Pathway (<span class="elsevierStyleItalic">RCP</span>) from the 5th assessment report of the Intergovernmental Panel on Climate Change (<a class="elsevierStyleCrossRef" href="#bib0310">IPCC, 2013</a>). This new family of scenarios projects an increase in radiative forcing levels, measured in W/m<span class="elsevierStyleSup">2</span>, according to the different pathways of greenhouse gas emissions (<a class="elsevierStyleCrossRef" href="#bib0370">Moss et al., 2010</a>). We selected the scenario called “stabilization” or the <span class="elsevierStyleItalic">RCP4.5</span> emissions scenario, where a moderate decrease in emissions is expected, given the implementation of green technologies and the expansion of forest areas (<a class="elsevierStyleCrossRef" href="#bib0560">Thomson et al., 2011</a>). And we selected the <span class="elsevierStyleItalic">RCP8.5</span> called the “trend” scenario, which foresees a linear advance in the projections of population growth, a higher demand for energy resources, and an absence of global policies for climate change (<a class="elsevierStyleCrossRef" href="#bib0480">Riahi et al., 2011</a>), both scenarios extending to the year 2050 (the average for the period is 2041 to 2060).</p><p id="par0095" class="elsevierStylePara elsevierViewall">As many Atmosphere-Ocean Global Circulation Models-AOGCMs are available for global climate, we objectively selected a small group of AOGCMs for future projections of species distributions, using the <span class="elsevierStyleItalic">k-medium</span> clustering approach, following an adaptation to the methodology proposed by <a class="elsevierStyleCrossRef" href="#bib0120">Casajus et al. (2016)</a>. This approach maintains the central trend of the models, preserving the uncertainty of future climatic conditions. We analyzed 28 AOGCMs (14 AOGCMs x 2 RCP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>28) selected as representative for the new generation of climate scenarios (<a class="elsevierStyleCrossRef" href="#bib0330">Knutti et al., 2013</a>). Thus, we obtained a subset of seven AOGCM: four for the RCP4.5 (CSIRO ACCESS1.0, GISS E2 R, ESM LR, GFDL CM3) summarizing 81% of the expected climatic variation in this scenario and three for the RCP8.5 (CSIRO ACCESS1.0, CNRM CM5, GFDL CM3) summarizing 79% of the variation (<span class="elsevierStyleItalic">see Supporting Information Appendix S2,</span> Table <span class="elsevierStyleItalic">S3, S4 and Figure S1 for description and results about AOGCMs selection</span>).</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Species distribution models</span><p id="par0100" class="elsevierStylePara elsevierViewall">We modeled the potential distribution of species using the Maxent algorithm (v. 3.3.3k) (<a class="elsevierStyleCrossRef" href="#bib0455">Phillips et al., 2006</a>). Maxent is an algorithm with high performance for modeling species distributions with only presence data and small samples (<a class="elsevierStyleCrossRef" href="#bib0285">Hernandez et al., 2006</a>; <a class="elsevierStyleCrossRef" href="#bib0425">Pearson et al., 2007</a>; <a class="elsevierStyleCrossRef" href="#bib0595">Warren et al., 2014</a>). However, Maxent's default configurations can produce over-adjusted models, leading to inadequate results (<a class="elsevierStyleCrossRef" href="#bib0465">Radosavljevic & Anderson, 2014</a>). To avoid over-adjusted models and to maximize the little information available, we selected the Maxent configuration that would produce the model with the optimum level of complexity for each species (<a class="elsevierStyleCrossRef" href="#bib0020">Anderson & Gonzalez, 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0595">Warren et al., 2014</a>; <a class="elsevierStyleCrossRef" href="#bib0235">Galante et al., 2018</a>). An optimal level of complexity implies the appropriate parameterization of the algorithm based on the amount of presence data and environmental variables available in order to balance the goodness of fit of the model with the complexity of the parameters used. For this, we modified the values of two critical parameters in the Maxent configuration: feature class (FC) and regularization multiplier (β), creating 60 combinations for an equal number of models for each species (<span class="elsevierStyleItalic">see Supporting Information Appendix S3, and</span> Table S<span class="elsevierStyleItalic">5 for description and results on calibration models</span>). The Jackknife method (k-1) was used as a data partitioning method for the evaluation of the models, which consists of reserving one occurrence data for the assessment while running the same number of models with the remaining data (<a class="elsevierStyleCrossRef" href="#bib0425">Pearson et al., 2007</a>; <a class="elsevierStyleCrossRef" href="#bib0520">Shcheglovitova & Anderson, 2013</a>). The criteria for the selection-models were the lowest AIC<span class="elsevierStyleInf">c</span> values, the high AUC<span class="elsevierStyleInf">test</span>, and the low AUC<span class="elsevierStyleInf">dif</span> values (<a class="elsevierStyleCrossRef" href="#bib0235">Galante et al., 2018</a>; <a class="elsevierStyleCrossRef" href="#bib0590">Warren & Seifert, 2011</a>).</p><p id="par0105" class="elsevierStylePara elsevierViewall">The models were calibrated in accessible areas or areas of potential dispersion for each species (M within the BAM diagram) (<a class="elsevierStyleCrossRef" href="#bib0535">Soberón et al., 2005</a>; <a class="elsevierStyleCrossRef" href="#bib0050">Barve et al., 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0540">Soberón, 2010</a>). For these, we developed a methodology to delimit the area M for each species (<span class="elsevierStyleItalic">see Supporting Information Appendix S4 for methodology</span>), an approach that has been shown to improve the effectiveness of species distribution models (<a class="elsevierStyleCrossRef" href="#bib0145">Cooper & Soberón, 2018</a>). This methodology was applied to each occurrence data set so as not to overestimate the potential distribution area</p><p id="par0110" class="elsevierStylePara elsevierViewall">We projected each model to current and future climatic conditions using the seven AOGCM, and we used all occurrence localities for each species and 10,000 background points. We considered avoiding any extrapolation types and maintaining the response of the models within the present climatic conditions (<a class="elsevierStyleCrossRef" href="#bib0195">Elith et al., 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0420">Owens et al., 2013</a>). In each case, we obtained a map of habitat suitability. We evaluated the performance of the Maxent model by calculating the commission and omission error values (Anderson et al., 2003) using partial ROC curves test (<a class="elsevierStyleCrossRef" href="#bib0440">Peterson et al., 2008</a>). We ran partial ROC curves specifying 1,000 repetitions for the resampling with replacement, and 50% of points in the bootstrap, and for each species we ran the partial curves using 1-omission threshold greater than 0.95 of the curve area for the evaluation in NicheToolBox (Osorio-Olvera et al., 2018).</p><p id="par0115" class="elsevierStylePara elsevierViewall">We assembled the subgroups of habitat suitability maps obtained from the seven AOGCM, for each RCP, using the weighted average consensus method, using as a weighted value the number of AOGCMs grouping in each AOGCM selected according to the k-mean method in order to create a single habitat suitability map. We use maximization of the sum of sensitivity and specificity (maxSSS), one of the best methods of threshold selection for distribution models developed with presence-only data and when random points are used instead of actual absences(<a class="elsevierStyleCrossRef" href="#bib0355">Liu et al., 2013</a>, <a class="elsevierStyleCrossRef" href="#bib0350">2016</a>) to transform habitat suitability maps of current conditions and climate projections into presence/absence binary maps.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Extent of suitable habitat, and land-use change scenarios</span><p id="par0120" class="elsevierStylePara elsevierViewall">We used the species distribution model and a remotely sensed land cover/use map for the year 2005 (with a resolution of 90<span class="elsevierStyleHsp" style=""></span>m) as baseline for assessing potential extent of suitable habitat of each anuran species. The land cover/use map was derived from 2004-2005 Landsat TM images by <a class="elsevierStyleCrossRef" href="#bib0485">Rodríguez Eraso et al. (2013)</a>. We consulted the IUCN Red List (Janury 2018) for the habitat preferences used by each species analyzed, and we considered natural vegetation cover as potential habitat according to the type of habitat reported (<span class="elsevierStyleItalic">see Supporting Information,</span> Table <span class="elsevierStyleItalic">S1</span>). We considered the other transformed covers (crops and pastures) as non-habitat, assuming they have a negative impact on amphibian populations. To refine the potential habitat map for each species, we excluded areas that were outside the reported altitudinal ranges for each species (<a class="elsevierStyleCrossRef" href="#bib0005">Acosta-Galvis, 2015</a>; <a class="elsevierStyleCrossRef" href="#bib0075">Bernal and Lynch, 2008</a>), extending 100 meters to the lower and upper limit, due to the uncertainty of the true elevation range; a map of elevation at 90<span class="elsevierStyleHsp" style=""></span>m resolution was used for this (<a class="elsevierStyleCrossRef" href="#bib0210">Ficetola et al., 2015</a>; <a class="elsevierStyleCrossRef" href="#bib0405">Ocampo-Peñuela et al., 2016</a>).</p><p id="par0125" class="elsevierStylePara elsevierViewall">We took into account, two regional land-use change scenarios for the Colombian' Andes up to the year 2050, both developed by <a class="elsevierStyleCrossRef" href="#bib0485">Rodríguez Eraso et al. (2013)</a>. The two scenarios were based on the IMAGE model (Integrated Model to Asses Global Environment) used to implement the IPCC-MESSRS scenarios (IMAGE 2001) under the assumption that market forces drive Latin America's demographic, economic, environmental and technological trends. The first scenario involved an increase in pasture cover (<span class="elsevierStyleItalic">IPS</span>), where there will be an increase in the number of cattle pastures. The second scenario pointed to a crop intensification scenario (<span class="elsevierStyleItalic">CIS</span>), where there would be an intensification of cropland. We used the baseline map and land-use change scenarios to filter the potential extent of suitable habitat in the current and future specie distribution models. In this way we obtained four combined maps of environmental change conditions for each species: <span class="elsevierStyleItalic">RCP4.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>IPS</span>, <span class="elsevierStyleItalic">RCP4.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span>; <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>IPS</span> and <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span>.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Area of occupancy (AOO)</span><p id="par0130" class="elsevierStylePara elsevierViewall">The loss of adequate environmental conditions due to climate and land-use change are considered stochastic disturbances that generate a negative rate of population growth, leading to the collapse or local extinction of the population (<a class="elsevierStyleCrossRef" href="#bib0375">Murray et al., 2017</a>). We used the AOO as a spatial feature or minimum unit to evaluate changes in environmental conditions. We considered two environmental change conditions for the availability of suitable habitats in the AOO: (i) under climate change only and (ii) under the combined factors (climate<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>land-use change). We assumed the environmental conditions and species occurrences as a proxy for the presence of a potential population. First, we calculated the AOO initially by drawing a grid with squares of 2<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleHsp" style=""></span>x<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>km overlaying the occurrence data, and the area of the occupied squares was used as the total area (UICN, 2017). We drew a circular buffer area of 4<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> around the occurrence data to evaluate the extent of suitable habitat within and near each AOO (<a class="elsevierStyleCrossRef" href="#bib0100">Breiner & Bergamini, 2018</a>) to avoid the potential errors induced by the point of origin of the grid (<a class="elsevierStyleCrossRef" href="#bib0375">Murray et al., 2017</a>) (<span class="elsevierStyleItalic">see Supporting Information Figure S2 for methodology</span>).</p><p id="par0135" class="elsevierStylePara elsevierViewall">Under climate change only, we considered the potentially occupied AOO if they matched the areas of presence on the binary map. If the AOO coincided with the boundary of the binary map, we considered them collapsed if the area of absence on the inside was greater than 50%. Under the combined conditions, we considered the above terms and the presence of land-covers reported as suitable habitat. We used the minimum habitat amount criterion of 80<span class="elsevierStyleHsp" style=""></span>ha, proposed by <a class="elsevierStyleCrossRef" href="#bib0505">Schneider-maunoury et al. (2016)</a>, based on the potential negative effects of the edge effect on the abundance of amphibian and reptile forest habitat specialists in patches of smaller area specifically in tropical forested areas. Thus, if inside the AOO an amount of coverage equal to or greater than 20% of the AOO area (80<span class="elsevierStyleHsp" style=""></span>ha) remained, we considered it as occupied area. We assume that the AOO with a smaller amount of habitat as collapsed or unoccupied, even in the presence of optimal climatic conditions.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Data analysis and extinction risk</span><p id="par0140" class="elsevierStylePara elsevierViewall">Data on the dispersal abilities of Andean anurans in the tropical region are scarce or non-existent. Due to narrow distributional ranges, high endemism, and habitat specificity, tropical amphibians were considered to have low mobility capacity (<a class="elsevierStyleCrossRef" href="#bib0160">Cushman, 2006</a>). In this sense, we evaluated the effect of climate change on the potential distribution of anurans, considering a scenario of non-dispersion and in this way future distributions comprised those areas that overlapped with current distributional areas.</p><p id="par0145" class="elsevierStylePara elsevierViewall">We assessed the change in the areas of distribution in each climate change scenario only and the change of extent of suitable habitat and the AOO in the combined climate and land-use change scenarios. We used a two-factor ANOVA to assess the difference between climate change only and extent of suitable habitat in each combined scenario. Additionally, we used one-factor ANOVA to assess the difference the change of and AOO between <span class="elsevierStyleItalic">RCP4.5 - RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>IPS</span>; and <span class="elsevierStyleItalic">RCP4.5</span> - <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span>.</p><p id="par0150" class="elsevierStylePara elsevierViewall">We used the relative loss values of extent of suitable habitat and AOO to assess extinction risks according to Criterion A3(c) (UICN, 2017). Criterion A3 considers a "reduction in population size that is projected, inferred or suspected to be achieved in the future," and sub-criterion (c), "from a reduction in area of occupancy (AOO), extent of presence (EOO) and/or quality of habitat." Thus, we classify species with an 80% reduction in AOO as Critically Endangered, 50% as Endangered and 30% as Vulnerable.</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Results</span><p id="par0155" class="elsevierStylePara elsevierViewall">We obtained 30 models that predicted the potential geographic distribution of each species from climatic variables in the Andean region of Colombia. The criteria of models-selection showed high AUC<span class="elsevierStyleInf">test</span> values on average, ranging from 0.77 to 0.95 (mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>d.e.<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.891<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.046), while AUC<span class="elsevierStyleInf">diffe</span> values showed low values (mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>d.e.<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.045<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.023). The value and other evaluation metrics for the parameters obtained are presented in the supplementary material (<span class="elsevierStyleItalic">See Table S5</span>). All SDM created for the selected species showed high values for the partial ROC test (1.30 – 1.87; <span class="elsevierStyleItalic">P <</span> 0.05), with a mean omission rate of only 10 %, indicating that the models of potential distribution were satisfactory.</p><p id="par0160" class="elsevierStylePara elsevierViewall">Our estimates of the current size of distribution areas show that 40 % (12 species) of the species had highly restricted distributional ranges (<5000 km2), 50 % (15 species) had distributional ranges between 5000-20000 km<span class="elsevierStyleSup">2</span>; and 10 % (3 species) had ranges > 20000 km<span class="elsevierStyleSup">2</span> (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). The extent of suitable habitat in 2005 with respect to potential area of distribution fluctuated from 20.2 % to 78.4 %, with an average of 42.1 %. (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>a and 3a).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0165" class="elsevierStylePara elsevierViewall">In the context of climate change only, our results indicated that all species assessed will lose a fraction (between 9 % - 100 %) of their area of distributions under both climate change scenarios by the year 2050. In the <span class="elsevierStyleItalic">RCP4.5</span> scenario the projections show that species may lose on average 51.5<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>21.2 % of their area of distributions (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>b and <a class="elsevierStyleCrossRef" href="#fig0015">3</a>b), for two species the loss would reach 92 % and 93 %: <span class="elsevierStyleItalic">Pristismantis anolerix</span> and <span class="elsevierStyleItalic">Pristimantis elegans</span>, respectively. In the <span class="elsevierStyleItalic">RCP8.5</span> scenario the loss of the area of distribution tends to increase, we expected that on average the reduction would be 68.9<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>20.3 % (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>c and <a class="elsevierStyleCrossRef" href="#fig0015">3</a>c). Two species would entirely lose their adequate habitat and become extinct: <span class="elsevierStyleItalic">Pristimantis elegans</span> and <span class="elsevierStyleItalic">Pristimantis racemus</span>. Another four species would reach losses above 90 %: <span class="elsevierStyleItalic">Nyrphagus ignotus</span>, <span class="elsevierStyleItalic">Pristimantis anolirex</span>, <span class="elsevierStyleItalic">Pristimantis peraticus</span>, and <span class="elsevierStyleItalic">Hyloscirtus antioquia</span>. Loss percentages were statistically different between scenarios (p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>7.931e-05; F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>16.74) indicating a different response of the species' distributional areas according to the climate change scenario.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0170" class="elsevierStylePara elsevierViewall">When we combined the effects of climate and land-use change, our results indicated that in the <span class="elsevierStyleItalic">RCP4.5</span> scenario the average percentage of loss of suitable habitat could additionally increase by 11.9% in scenario <span class="elsevierStyleItalic">IPS</span> and 14.8% in scenario <span class="elsevierStyleItalic">CIS</span> (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a> b and <a class="elsevierStyleCrossRef" href="#fig0020">4</a>b-d). There would be no total loss of suitable habitat for any of the species, but five species would have losses above 90% of their ranges: <span class="elsevierStyleItalic">Pristimantis anolirex, Hyloscirtus antioquia, Atelopus marinkellei, Pristimastis elegans</span> and <span class="elsevierStyleItalic">Nymphargus ignotus</span>. In RCP8.5 the increase would be 8.5% in the <span class="elsevierStyleItalic">IPS</span> scenario and 7.8% in the <span class="elsevierStyleItalic">CIS</span> scenario (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>c and <a class="elsevierStyleCrossRef" href="#fig0020">4</a>c-e). Three species might become extinct: <span class="elsevierStyleItalic">P. elegans</span>, <span class="elsevierStyleItalic">P. racemus</span> and <span class="elsevierStyleItalic">H. antioquia</span>, and five species would lose more than 90% of their extent of suitable habitat: <span class="elsevierStyleItalic">P. anolirex, N. ignotus, P. peraticus, Dendrosophus norandinus</span>, and <span class="elsevierStyleItalic">Atelopus marinkellei</span>. Among the land use intensification scenarios (<span class="elsevierStyleItalic">CIS</span> vs. <span class="elsevierStyleItalic">IPS</span>) we found no significant differences in the percentages of the loss of extent of suitable habitat (p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.3849 F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.7606).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0175" class="elsevierStylePara elsevierViewall">We estimated the AOOs between 36<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> and 132<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> with an average of 71<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span> per species (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). When baseline of extent of suitable habitat were incorporated, AOOs were reduced by an average of 12% (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>a). The <span class="elsevierStyleItalic">RCP4.5</span> predicted that species will lose an average of 38.4<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>23.3 % of AOO (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>b) and nine species could experience a loss ≤ 50 % of the current AOO. For the <span class="elsevierStyleItalic">RCP8.5</span> the average loss increased considerably to 62.6<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>28.8 % (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>c) and probably in 20 species the loss of their AOO would be ≤ 50 %. In the combined models of climate change and land use under the <span class="elsevierStyleItalic">RCP4.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>IPS</span> and <span class="elsevierStyleItalic">RCP4.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span> scenarios species would lose an average of 49.6% and 55.5% of the AOO (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>b) respectively, here more than half of the species would lose a fraction ≤ 50 % of their current AOO (17 species in <span class="elsevierStyleItalic">IPS</span> and 21 in <span class="elsevierStyleItalic">CIS</span>). The <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>IPS</span> probably predicts the loss of 69.6 % of the AOO, and the <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span> loss would be on the order of 72,6 % (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>c). In this combined scenario 24 and 27 species in the <span class="elsevierStyleItalic">IPS</span> and <span class="elsevierStyleItalic">CIS</span>, would be expected to lose ≤ 50% of their current AOO (<span class="elsevierStyleItalic">See Supporting Information Table S6</span>). There was no direct relationship between the size of the area of distribution and the percentage of loss of the area of occupancy (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>). We found that there were no statistically significant differences in AOO loss percentages between the intensification scenarios (<span class="elsevierStyleItalic">IPS</span> vs. <span class="elsevierStyleItalic">CIS</span>) (p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.3128 F<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.0369).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0180" class="elsevierStylePara elsevierViewall">Our estimates of extinction risk based on the percentages of loss of extent of suitable habitat and AOO showed differences in the assignment of threat categories that species would have in the different environmental change scenarios (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>). The AOO loss percentages identified the extinction of one species (EW) in the <span class="elsevierStyleItalic">RCP4.5</span> in both land use scenarios, two Critically Endangered species (CR) and between 18 and 21 Endangered (EN) (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>a). In the same scenarios, the percentage of loss of extent of suitable habitat tended to place more than 50% of species in the EN categories (19 species) and 6-7 species in CR categories and did not estimate any extinction (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>b).</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0185" class="elsevierStylePara elsevierViewall">In <span class="elsevierStyleItalic">RCP8.5</span>, AOO loss estimates identified twice as many species in the Extinction category (6 species in EW) (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>c) with regard to the threat classification based on loss of extent of suitable habitat (3 species in EW were identified), both in the <span class="elsevierStyleItalic">IPS</span> scenario (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>d). In <span class="elsevierStyleItalic">RCP8.5<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>CIS</span> scenario, the AOO loss estimated the classification of five species in the potential EW category and 50 % of the species in the category EN. The evaluation for the loss of extent of suitable habitat (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>d) showed that the species might be mostly grouped into categories EN and CR.</p><p id="par0190" class="elsevierStylePara elsevierViewall">A total of six species (20%) might become potentially extinct considering the loss of extent of suitable habitat in the AOO due to climate change and intensified land use under some of the environmental change scenarios projected for 2050. The species in the potential EW category were <span class="elsevierStyleItalic">Atelopus marinkellei</span>, <span class="elsevierStyleItalic">Pristimantis dorsopictus</span>, <span class="elsevierStyleItalic">Pristimantis merostictus</span>, <span class="elsevierStyleItalic">Pristimantis miyatai</span>, <span class="elsevierStyleItalic">Pristimantis racemus</span>, and <span class="elsevierStyleItalic">Hyloscirtus antioquia</span> (<span class="elsevierStyleItalic">see Supporting Information Table S6</span>).</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Discussion</span><p id="par0195" class="elsevierStylePara elsevierViewall">According to the distribution hypotheses developed and based on our projections, the results suggested that: 1) Andean anurans will be exposed to a continuous decline in their suitable habitat areas, increasing the risk of extinction in the different combinations of environmental change scenarios assessed; 2) even under the stabilization scenario (<span class="elsevierStyleItalic">RCP4.5</span>) projected changes in temperature and precipitation, as well as reduction of remaining suitable habitats, would lead to unfavorable environmental conditions for a high percentage of the assessed anurans; and 3) loss of AOOs projected greater extinctions than loss by extent of suitable habitat in the combined scenarios. Extent of suitable habitat and the AOO are spatial traits that had a high potential for capturing the mixed signals of climate change, especially the loss of habitat by land use changes.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Our results suggest that in the future the elevated richness of Andean anurans is at risk of losing a large percentage of its species if the trend scenario (<span class="elsevierStyleItalic">RCP8.5</span>) predominates as a pattern of global socioeconomic development and if at the local level the remaining habitats are not conserved by land use policies that regulate the expansion of crops and pastures for livestock. The loss of area of distribution was different in the two scenarios; it was less in <span class="elsevierStyleItalic">RCP4.5</span>. However, although the loss of range in the stabilization scenario was also high, opting for options for development that lead to this scenario is much more advisable to avoid a higher number of species extinctions.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Amphibian assessments in the tropical region of South America have shown that species in the northern Andean region are highly vulnerable to climate change (<a class="elsevierStyleCrossRef" href="#bib0215">Foden et al., 2013</a>), and a high loss of species is predictable in different global warming scenarios (<a class="elsevierStyleCrossRef" href="#bib0340">Lawler et al., 2009</a>). Our results confirmed these findings, and we further estimated that the effects combined with changes in land use could double the risk of extinction. Few studies have evaluated the combined effects of climate change and land use change on amphibians in the Andean region. We found only one reference in Ecuador (<a class="elsevierStyleCrossRef" href="#bib0045">Barragán Altamirano, 2015</a>), where an average loss of 37% of the distributional area is estimated in a group of Andean anurans without extinctions under a scenario of unlimited dispersal. Our results partially corresponded to what Barragán found, given that our projections for the loss of the distributional area reached an average of 51% in the stabilization scenario and a minimum of 20 % extinction for the anurans that we studied. Considering some of the scenarios of both factors in the Colombian Andes, the effects were apparently greater. To our knowledge, our report was the first assessment of extinction risk in Andean anurans for Colombia using global climate models and regional land use models to illustrate dynamic change.</p><p id="par0210" class="elsevierStylePara elsevierViewall">A study of 46 species of anurans in the Sierra Nevada de Santa Marta, Colombia (<a class="elsevierStyleCrossRef" href="#bib0220">Forero-Medina et al., 2011</a>) found patterns similar to our results by the year 2100. This study predicted that at least seven species might lose more than 70% of their current range due to the absence of adequate climate and land use conditions at high altitudes that would challenge the movements of anurans at higher elevation. In a tropical mountainous region of Madagascar Raxworthy et al (2008) assessed the effects of climate change on 30 amphibian and reptile species over 20 years, and they projected total habitat loss for three of the species analyzed. In our research, calculating projections of distributional models and land use changes, we estimated extinction of the fauna of at least six species of anurans of which one, <span class="elsevierStyleItalic">Atelopus marinkellei</span>, has not been sighted since 2007, due to chytridiomycosis, produced by the fungus <span class="elsevierStyleItalic">Batrachochytrium dendrobatidis</span> (<a class="elsevierStyleCrossRef" href="#bib0495">Ruiz & Rueda-Almonacid, 2008</a>).</p><p id="par0215" class="elsevierStylePara elsevierViewall">A decline of amphibian populations in the Andean region has been documented in Colombia, Peru, Ecuador, and Bolivia (<a class="elsevierStyleCrossRef" href="#bib0345">Lips et al., 2005</a>; <a class="elsevierStyleCrossRef" href="#bib0360">May et al., 2008</a>; <a class="elsevierStyleCrossRef" href="#bib0460">Pounds et al., 2006</a>). The synergistic effects of climate change, infectious diseases, and habitat loss are cited as the proximate causes of this reduction and extinction of tropical amphibians (<a class="elsevierStyleCrossRef" href="#bib0015">Alroy, 2015</a>; <a class="elsevierStyleCrossRef" href="#bib0070">Becker & Zamudio, 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0085">Blaustein et al., 2011</a>; Jetz et al., 2011). Mechanisms relating to the evolutionary history of Andean amphibians and their rapid diversification in the face of orogenic factors and climate change in the Neotropics have also been proposed as important extinction factors (<a class="elsevierStyleCrossRef" href="#bib0255">Greenberg et al., 2017</a>). Species with small geographic ranges, restricted environmental niches, and specialized habitats, are traits relating to the group of species evaluated here. These are evolutionary aspects that have a high relation to the speciation/extinction processes. However, anthropogenic factors are accelerating the rates of environmental change, and they surpass responses for the adaptation of species when compared to changes that occurred throughout geological time that favored extinction events (<a class="elsevierStyleCrossRef" href="#bib0570">Urban, 2015</a>)</p><p id="par0220" class="elsevierStylePara elsevierViewall">In species endemic to the Andean region other studies of the potential effects of climate change project a reduction in the size of distributional areas, for birds (<a class="elsevierStyleCrossRef" href="#bib0470">Ramirez-Villegas et al., 2014</a>; <a class="elsevierStyleCrossRef" href="#bib0575">Velásquez-Tibatá et al., 2013</a>), mammals (<a class="elsevierStyleCrossRef" href="#bib0415">Ortega-Andrade et al., 2015</a>), plants (<a class="elsevierStyleCrossRef" href="#bib0205">Feeley & Silman, 2010</a>; <a class="elsevierStyleCrossRef" href="#bib0240">Garavito et al., 2015</a>) and uphill changes in the ranges of amphibians due to deglaciation in Peru (<a class="elsevierStyleCrossRef" href="#bib0510">Seimon et al., 2007</a>). These effects generate significant changes in communities and possible extinctions due to total loss of suitable habitat. Globally, amphibians and reptiles respond more negatively to the combined effects of climate change and land use change compared to birds and mammals, so responses are expected to be disproportionately higher in this group of vertebrates (<a class="elsevierStyleCrossRef" href="#bib0390">Newbold, 2018</a>).</p><p id="par0225" class="elsevierStylePara elsevierViewall">There were no significant differences in response to habitat loss between land-use intensification scenarios. This indicates that the two transformative trends in the Andean landscape equally impact the habitats currently occupied by these species. Replacement of forests and natural habitats by pastures and crops cause adverse effects on species and communities of anurans that are highly dependent on conserved natural habitats (<a class="elsevierStyleCrossRef" href="#bib0140">Cole et al., 2014</a>; <a class="elsevierStyleCrossRef" href="#bib0315">Issacs-Cubides & Urbina-Cardona, 2011</a>; <a class="elsevierStyleCrossRef" href="#bib0555">Thompson et al., 2015</a>). For instance, <span class="elsevierStyleItalic">Pristimantis</span> frogs (73 % of the species studied here) are highly vulnerable to the expansion of agricultural and grazing areas (<a class="elsevierStyleCrossRef" href="#bib0290">Herrera-Montes et al., 2004</a>). The increase in temperatures could modify soil moisture in the small fragments where they are found, negatively affecting the development of eggs deposited in litterfall. So, it is expected that the most significant number of extinctions will occur in this group (<a class="elsevierStyleCrossRef" href="#bib0140">Cole et al., 2014</a>) as the interaction between fragment area and land use has a strong effect on amphibian species density (<a class="elsevierStyleCrossRef" href="#bib0450">Phillips et al., 2018</a>). Habitat loss also causes changes in climatic conditions at the edges of fragments, making it difficult to establish frogs in habitats adjacent to cattle grazing areas (<a class="elsevierStyleCrossRef" href="#bib0150">Cortés et al., 2008</a>). This increases the distances between patches and reduces the successful dispersal of juveniles that are key to the persistence of amphibian populations (<a class="elsevierStyleCrossRef" href="#bib0585">Vonesh & De la Cruz, 2002</a>). On the other hand, species tolerant of landscape transformations (e.g., <span class="elsevierStyleItalic">Pristimantis factiousus</span> and <span class="elsevierStyleItalic">Pristimantis lynchi</span>) might be favored by changes in temperatures produced in habitats and climate change (<a class="elsevierStyleCrossRef" href="#bib0400">Nowakowski et al., 2017</a>).</p><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Spatial traits, Climate change, land-use change and risk of extinction</span><p id="par0230" class="elsevierStylePara elsevierViewall">Our results indicated that extent of suitable habitat and the AOO works as an alternative for assessing the local effects of habitat loss due to climate change and land use, obtaining assessments of the future extinction risk of Andean anurans. Our approach could be replicated in other geographical realms to assess the risk of extinction of other taxonomic groups. We used the appropriate IUCN recommended measurement scales for the AOO (<a class="elsevierStyleCrossRef" href="#bib0320">IUCN, 2017</a>), using combined high-resolution climate and land use information as a proxy for the permanence or collapse of local anuran populations within the AOO under different future climate and habitat conditions. We did not find a linear relationship between the loss of AOO and the size of the distributional areas [e.g., EOO]. This indicated that the size of the range and its projected changes was not necessarily a parameter associated with the local response to habitat modification (<a class="elsevierStyleCrossRef" href="#bib0400">Nowakowski et al., 2017</a>). Our findings suggested that the extent of suitable habitat and the AOO are measure of the geographic range and that these can be linked to local responses to habitat modification of species, both for climate and land-use change.</p><p id="par0235" class="elsevierStylePara elsevierViewall">Our projections indicated that by including the AOO metric together with a minimum habitat amount parameter in the combined models, it was possible to capture the changed signals in land use that allow the collapsed AOO to be properly evaluated at a landscape scale. Incorporating land use change were necessary for assessing extinction risk in the selected group of anurans because we obtained different threat categories than those derived from assessments that only considered change in the extent of distributional areas due to climate change. The AOO as a measure of the range of distribution is a spatial trait unit that can be dispersed or grouped according to the type of species distribution; therefore, the positive or negative effect of a stochastic event will depend on the size of the AOO and the spatial distribution of local populations (<a class="elsevierStyleCrossRef" href="#bib0375">Murray et al., 2017</a>; <a class="elsevierStyleCrossRef" href="#bib0430">Pearson et al., 2014</a>). Our results showed that the average AOO for the species was small (71<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span>); therefore, loss of suitable habitat might have an adverse effect on the demography of widely distributed species (<a class="elsevierStyleCrossRef" href="#bib0105">Breiner et al., 2017</a>). Extreme climates and habitat loss tend to challenge the survival parameters of each species differently, and this could translate into negative population growth rates in the worst scenario. Low growth rates and high death rates can lead to local extinctions (<a class="elsevierStyleCrossRef" href="#bib0515">Selwood et al., 2015</a>).</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Implication for conservation</span><p id="par0240" class="elsevierStylePara elsevierViewall">Our results are crucial for alerting decision-makers, as considering two of the main forces of landscape transformation (the expansion of crops and pastures) about the future of one of the most threatened groups of vertebrates in the Andean zone, makes it possible to argue in favor of early mitigation strategies that could change the direction in which biodiversity is being driven. Projections of the growing human population indicate an increased demand for food and energy resources, and these will increase conservation conflicts between crops and key biodiversity areas such as in the northern Andes of South American (<a class="elsevierStyleCrossRef" href="#bib0110">Brooks et al., 2002</a>; <a class="elsevierStyleCrossRef" href="#bib0265">Hannah et al., 2013</a>; <a class="elsevierStyleCrossRef" href="#bib0530">Smith et al., 2010</a>). For instance, promoting the restoration of land that has been abandoned by livestock to secondary forests, could be a mitigation scenario that has been shown to have high co-benefits for carbon sequestration and increased biodiversity of Andean anurans (<a class="elsevierStyleCrossRef" href="#bib0055">Basham et al., 2016</a>). This strategy would also increase the spatial heterogeneity of vegetation in productive areas that have demonstrated benefits for the diversity of frogs (<a class="elsevierStyleCrossRef" href="#bib0115">Brüning et al., 2018</a>), lessening the impact of the effects of land use change on the composition of ecological assemblages in Colombia (<a class="elsevierStyleCrossRef" href="#bib0180">Echeverría-Londoño et al., 2016</a>).</p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conclusion</span><p id="par0245" class="elsevierStylePara elsevierViewall">Evidence from projections shows that the combined effect of climate and land-use change will considerably reduce the extent of suitable habitat for a high percentage of Andean frogs, even in the climate stabilization scenario. Incorporating the potential loss of suitable habitat into extinction risk assessments reduces the underestimation of extinction risk that occurs only through climate change assessment, particularly in habitat specialist species. Extent of suitable habitat and the AOO are suitable alternatives to capture alterations in distribution areas due to climate change and especially due to change in land-use due to the scale on which this factor operates and to obtain future estimates of extinction risk.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Conflict of Interest Statement</span><p id="par0250" class="elsevierStylePara elsevierViewall">No conflicts declared.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Funding information</span><p id="par0255" class="elsevierStylePara elsevierViewall">High-Level Human Capital Formation Funds for the Department of Atlántico, Colombia,</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Author contributions</span><p id="par0260" class="elsevierStylePara elsevierViewall">W.J.A.H and D.A.P. conceived the ideas; W.J.A.H collected and processed species occurrence and climate data, constructed species distribution models and conducted analyses. D.A.P provided the land use scenarios. N.U.C provided data of localities for some species. W.J.A.H. wrote the manuscript with contribution from N.U.C and D.A.P.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:14 [ 0 => array:3 [ "identificador" => "xres1276577" "titulo" => "Graphical abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:3 [ "identificador" => "xres1276575" "titulo" => "Highlights" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 2 => array:3 [ "identificador" => "xres1276576" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0015" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1180668" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Material and methods" "secciones" => array:7 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Study area" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Species records and occurrence data" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Climate data and scenarios" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Species distribution models" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Extent of suitable habitat, and land-use change scenarios" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Area of occupancy (AOO)" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Data analysis and extinction risk" ] ] ] 6 => array:2 [ "identificador" => "sec0050" "titulo" => "Results" ] 7 => array:3 [ "identificador" => "sec0055" "titulo" => "Discussion" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Spatial traits, Climate change, land-use change and risk of extinction" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Implication for conservation" ] ] ] 8 => array:2 [ "identificador" => "sec0070" "titulo" => "Conclusion" ] 9 => array:2 [ "identificador" => "sec0075" "titulo" => "Conflict of Interest Statement" ] 10 => array:2 [ "identificador" => "sec0080" "titulo" => "Funding information" ] 11 => array:2 [ "identificador" => "sec0085" "titulo" => "Author contributions" ] 12 => array:2 [ "identificador" => "xack438442" "titulo" => "Acknowledgments" ] 13 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-11-05" "fechaAceptado" => "2019-11-05" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1180668" "palabras" => array:7 [ 0 => "biodiversity loss" 1 => "global warming" 2 => "endemic species" 3 => "amphibians" 4 => "hotspot biodiversity" 5 => "tropical mountains" 6 => "IUCN red list" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0015" class="elsevierStyleSection elsevierViewall"><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Climate and land-use change, raise significant threats to biodiversity, affecting species ranges worldwide. Both factors operate on different scales, so including spatial traits that allow them to be appropriately evaluated is relevant to the early identification of extinction risks. We aimed to evaluate the potential effects of climate and land-use change on the extent of suitable habitat of a set of species of Andean anurans; to assess the loss of the area of occupancy (AOO); and to estimate the risk of extinction according to the percentages of loss of the extent of suitable habitat and AOO. We modeled the current and future potential distributions of 30 endemic anurans from the Colombian Andes. We calculated the change in current potential distributional ranges and in the extent of suitable habitat under two climatic regimes and land-use scenarios. We quantified the AOO using the 2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>km grid method and assessed its loss based on habitat availability in the combined scenarios. We used the percentage losses of the extent of suitable habitat and AOO to estimate and compare the extinction risks according to IUCN criteria. We found that climate and land-use change will cause a relative loss of 63.4 % to 79.4 % of the current extent of suitable habitat and 49.6 % to 72.6 % of AOO of the Andean anurans by the year 2050. The loss of AOO made it possible to detect twice as many species at high risk of extinction than the loss of the extent of suitable habitat. The effects of climate change and habitat loss could lead to potential extinction events in Andean frogs. Extent of suitable habitat, and especially the area of occupancy are appropriate spatial traits that could be used to assess extinction risks in species sensitive to local habitat modification by climate change and land-use change.</p></span>" ] ] "highlights" => array:2 [ "titulo" => "Highlights" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0005" class="elsevierStylePara elsevierViewall">Changes in the extent of suitable habitat and area of occupancy (AOO) were assessed by the combined effects of climate and land-use change in Andean anurans.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0010" class="elsevierStylePara elsevierViewall">Climate and land-use changes will cause a relative loss of 63.4 % to 79.4 % of the current extent of suitable habitat and 49.6 % to 72.6 % of AOO of Andean anurans by the year 2050.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">•</span><p id="par0015" class="elsevierStylePara elsevierViewall">The collapse of the area of occupation (AOO) identified twice as many species at risk of extinction as the loss of the extent of suitable habitat.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">•</span><p id="par0020" class="elsevierStylePara elsevierViewall">Extent of suitable habitat and the area of occupancy (AOO) have great potential to measure the combined effects of climate change and land use on the future risk of extinction of the species.</p></li></ul></p></span>" ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0275" class="elsevierStylePara elsevierViewall">The following is Supplementary data to this article:<elsevierMultimedia ident="upi0005"></elsevierMultimedia></p>" "etiqueta" => "Appendix A" "titulo" => "Supplementary data" "identificador" => "sec0095" ] ] ] ] "multimedia" => array:9 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1916 "Ancho" => 3250 "Tamanyo" => 521064 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0035" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Estimated size of the distribution ranges for current climatic conditions according to the distribution model elaborated for each species in km<span class="elsevierStyleSup">2</span> (grey bars). The blue parallel lines separate the species we consider highly restricted (<5000 km<span class="elsevierStyleSup">2</span>), moderately restricted (5000-20000<span class="elsevierStyleHsp" style=""></span>km<span class="elsevierStyleSup">2</span>) and of low restriction (>20000 km<span class="elsevierStyleSup">2</span>), compared to the size of the study area. The empty bars represent the calculated sizes of the current AOO in km<span class="elsevierStyleSup">2</span> for each of the species, calculated from the occurrence data available and with cells of 2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>km.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1291 "Ancho" => 3333 "Tamanyo" => 442796 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0040" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Potential distribution maps overlaid for the 30 species of anurans assessed. Under current climatic conditions (a) climate stabilization scenario (b), and trend scenario (c), both scenarios to 2050.</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1892 "Ancho" => 2500 "Tamanyo" => 290655 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0045" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Boxplot with the proportion of suitable (violet box) and unsuitable (red box) relative distributional areas under current climate and land use conditions for Andean frogs (a), relative loss of distribution area under future climate conditions only (blue box) and future climate<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>changes in land use (green box: crop intensification scenario; yellow box: increased pasture scenario) in the <span class="elsevierStyleItalic">RCP4.5</span> stabilization scenario (b) and in the <span class="elsevierStyleItalic">RCP8.5</span> trend scenario (c). Losses in climatic conditions were only calculated based on the size of the distributional area derived from the climate model, and the loss in the combined models was calculated with respect to the currently available climatic habitat and land use conditions.</p>" ] ] 3 => array:8 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3022 "Ancho" => 3167 "Tamanyo" => 651227 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0050" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Potential distribution maps overlaid for the 30 species of anurans assessed. Under current climatic conditions and land use cover maps to 2005 show (a) climate stabilization scenario; (b) climate trend scenario; (c) plus cropland intensification scenario. (c). Climate stabilization scenario (d) and climate trend scenario (d) plus an increase in pastures scenario.</p>" ] ] 4 => array:8 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1836 "Ancho" => 2500 "Tamanyo" => 262180 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0055" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Boxplot with the proportion of current area of occupancy (AOO) (violet box) and loss (red box) under current climate and land use conditions for Andean frogs (a); relative loss of AOO under future climate conditions only (blue box) and future climate<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>changes in land use (green box: crop intensification scenario; yellow box: increased pasture scenario) in RCP4.5 stabilization scenario (b); and in the trend scenario CPR 8.5 (c). AOO losses under climatic conditions were only calculated with respect to the range size derived from the climate model and AOO loss in the combined models was calculated based on the currently available climatic habitat and land use conditions.</p>" ] ] 5 => array:8 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2001 "Ancho" => 3167 "Tamanyo" => 427791 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0060" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Relationship between the percentage of loss of area of occupancy and the size of the distribution area of the anurans assessed in the combined scenarios: RCP4.5 + Land Use Change (a), and RCP8.5 + Land Use Change (b); (IPS<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Increased Pasture Scenario; CIS<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Crops intensification Scenarios). The horizontal colored lines correspond to the AOO loss thresholds by assigning threat categories according to A3c criteria. The black vertical lines indicate the degree of restriction of the distribution according to <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>.</p>" ] ] 6 => array:8 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 3702 "Ancho" => 3167 "Tamanyo" => 478733 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0065" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Estimation of extinction risk in Andean anurans evaluated in the different scenarios combined for environmental change to 2050, based on the percentages of loss of the area of occupancy (a and c) and the percentage of loss of the extent of suitable habitat (b and d) to the year 2050. (IPS<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Increased Pasture Scenario; CIS<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Crops Intensification Scenarios). The estimates were made according to criterion A3c of the IUCN Red List of species.</p>" ] ] 7 => array:5 [ "identificador" => "upi0005" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc1.docx" "ficheroTamanyo" => 1393963 ] ] 8 => array:5 [ "identificador" => "fig0040" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 922 "Ancho" => 1333 "Tamanyo" => 122231 ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:119 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "Acosta-Galvis, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Una nueva especie del género Pristimantis (aura: craugastoridae) del complejo de páramos Merchán-Iguape (Boyacá, Colombia)" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Biota Colomb." "fecha" => "2015" "paginaInicial" => "107" "paginaFinal" => "127" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "Aiello-Lammens et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ecog.01132" "Revista" => array:6 [ "tituloSerie" => "Ecography (Cop.)." "fecha" => "2015" "volumen" => "38" "paginaInicial" => "541" "paginaFinal" => "545" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "Alroy, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current extinction rates of reptiles and amphibians" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.1508681112" "Revista" => array:3 [ "tituloSerie" => "Proc. Natl. Acad. Sci." "fecha" => "2015" "volumen" => "2015" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "Anderson and Gonzalez, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2011.04.011" "Revista" => array:5 [ "tituloSerie" => "Ecol. Modell." "fecha" => "2011" "volumen" => "222" "paginaInicial" => "2796" "paginaFinal" => "2811" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "Armenteras et al., 2003" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0006-3207(02)00359-2" "Revista" => array:5 [ "tituloSerie" => "Colombia. Biol. Conserv." "fecha" => "2003" "volumen" => "113" "paginaInicial" => "245" "paginaFinal" => "256" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "Armesto and Señaris, 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anuros del norte de los andes: Patrones de riqueza de especies y estado de conservación" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.11606/0031-1049.2017.57.39" "Revista" => array:5 [ "tituloSerie" => "Pap. Avulsos Zool." "fecha" => "2017" "volumen" => "57" "paginaInicial" => "491" "paginaFinal" => "526" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "Báez et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/23766808.2016.1248710" "Revista" => array:5 [ "tituloSerie" => "Neotrop. Biodivers." "fecha" => "2016" "volumen" => "2" "paginaInicial" => "181" "paginaFinal" => "194" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "Barnosky et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Has the Earth’s sixth mass extinction already arrived?" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature09678" "Revista" => array:4 [ "tituloSerie" => "Nature" "fecha" => "2011" "volumen" => "471" "paginaInicial" => "51" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "Barragán Altamirano, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of future climate change and habitat loss in the distribution of frog species in the Ecuadorian Andes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "fecha" => "2015" "editorial" => "Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Biológicas" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "Barve et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The crucial role of the accessible area in ecological niche modeling and species distribution modeling" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2011.02.011" "Revista" => array:5 [ "tituloSerie" => "Ecol. Modell." "fecha" => "2011" "volumen" => "222" "paginaInicial" => "1810" "paginaFinal" => "1819" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "Basham et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantifying carbon and amphibian co-benefits from secondary forest regeneration in the Tropical Andes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/acv.12276" "Revista" => array:5 [ "tituloSerie" => "Anim. Conserv." "fecha" => "2016" "volumen" => "19" "paginaInicial" => "548" "paginaFinal" => "560" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "Bax and Francesconi, 2019" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jenvman.2018.11.086" "Revista" => array:6 [ "tituloSerie" => "J. Environ. Manage." "fecha" => "2019" "volumen" => "232" "paginaInicial" => "387" "paginaFinal" => "396" "link" => array:1 [ …1] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "Becker et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Habitat Split and the Global Decline of Amphibians" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1149374" "Revista" => array:5 [ "tituloSerie" => "Science (80-.)" "fecha" => "2007" "volumen" => "318" "paginaInicial" => "1775" "paginaFinal" => "1777" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "Becker and Zamudio, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tropical amphibian populations experience higher disease risk in natural habitats" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.1014497108" "Revista" => array:6 [ "tituloSerie" => "Proc. Natl. Acad. Sci. U. S. A." "fecha" => "2011" "volumen" => "108" "paginaInicial" => "9893" "paginaFinal" => "9898" "link" => array:1 [ …1] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "Bernal and Lynch, 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Review and analysis of altitudinal distribution of the Andean anurans in Colombia" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.11646/zootaxa.1826.1.1" "Revista" => array:4 [ "tituloSerie" => "Zootaxa" "fecha" => "2008" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "Bernal and Lynch, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thermal tolerance in anuran embryos with different reproductive modes: relationship to altitude" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2013/183212" "Revista" => array:3 [ "tituloSerie" => "ScientificWorldJournal." "fecha" => "2013" "volumen" => "2013" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "Blaustein et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The complexity of amphibian population declines: Understanding the role of cofactors in driving amphibian losses" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1749-6632.2010.05909.x" "Revista" => array:6 [ "tituloSerie" => "Ann. N. Y. Acad. Sci." "fecha" => "2011" "volumen" => "1223" "paginaInicial" => "108" "paginaFinal" => "119" "link" => array:1 [ …1] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "Böhm et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The conservation status of the world’s reptiles" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biocon.2012.07.015" "Revista" => array:6 [ "tituloSerie" => "Biol. Conserv." "fecha" => "2013" "volumen" => "157" "paginaInicial" => "372" "paginaFinal" => "385" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "Boria et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2013.12.012" "Revista" => array:5 [ "tituloSerie" => "Ecol. Modell." "fecha" => "2014" "volumen" => "275" "paginaInicial" => "73" "paginaFinal" => "77" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "Breiner and Bergamini, 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Improving the estimation of area of occupancy for IUCN Red List assessments by using a circular buffer approach" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10531-018-1555-5" "Revista" => array:2 [ "tituloSerie" => "Biodivers. Conserv." "fecha" => "2018" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "Breiner et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Including environmental niche information to improve IUCN Red List assessments" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12545" "Revista" => array:5 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2017" "volumen" => "23" "paginaInicial" => "484" "paginaFinal" => "495" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "Brooks et al., 2002" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Habitat Loss and Extinction in the Hotspots of Biodiversity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1046/j.1523-1739.2002.00530.x" "Revista" => array:5 [ "tituloSerie" => "Conserv. Biol." "fecha" => "2002" "volumen" => "16" "paginaInicial" => "909" "paginaFinal" => "923" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "Brüning et al., 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Land-use heterogeneity by small-scale agriculture promotes amphibian diversity in montane agroforestry systems of northeast Colombia" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.agee.2018.05.011" "Revista" => array:5 [ "tituloSerie" => "Agric. Ecosyst. Environ." "fecha" => "2018" "volumen" => "264" "paginaInicial" => "15" "paginaFinal" => "23" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "Casajus et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0152495" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2016" "volumen" => "11" "paginaInicial" => "1" "paginaFinal" => "17" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "Castroviejo-Fisher et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neotropical diversification seen through glassfrogs" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jbi.12208" "Revista" => array:5 [ "tituloSerie" => "J. Biogeogr." "fecha" => "2014" "volumen" => "41" "paginaInicial" => "66" "paginaFinal" => "80" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "Catenazzi, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "State of the World’s Amphibians" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev-environ-102014-021358" "Revista" => array:3 [ "tituloSerie" => "Annu. Rev. Environ. Resour." "fecha" => "2015" "volumen" => "40" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "Chaudhary and Mooers, 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Terrestrial vertebrate biodiversity loss under future global land use change scenarios" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/su10082764" "Revista" => array:3 [ "tituloSerie" => "Sustain" "fecha" => "2018" "volumen" => "10" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "Cole et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial and temporal variation in population dynamics of Andean frogs: Effects of forest disturbance and evidence for declines" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.gecco.2014.06.002" "Revista" => array:5 [ "tituloSerie" => "Glob. Ecol. Conserv." "fecha" => "2014" "volumen" => "1" "paginaInicial" => "60" "paginaFinal" => "70" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "Cooper and Soberón, 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Creating individual accessible area hypotheses improves stacked species distribution model performance" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/geb.12678" "Revista" => array:5 [ "tituloSerie" => "Glob. Ecol. Biogeogr." "fecha" => "2018" "volumen" => "27" "paginaInicial" => "156" "paginaFinal" => "165" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "Cortés et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Edge Effects on Richness, Abundance and Diversity of Frogs in Andean Cloud Forest Fragments" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2994/1808-9798-3.3.213" "Revista" => array:6 [ "tituloSerie" => "South Am. J. Herpetol." "fecha" => "2008" "volumen" => "3" "paginaInicial" => "213" "paginaFinal" => "222" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "Currie et al., 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1461-0248.2004.00671.x" "Revista" => array:2 [ "tituloSerie" => "Ecol. Lett." "fecha" => "2004" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "Cushman, 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of habitat loss and fragmentation on amphibians: A review and prospectus" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biocon.2005.09.031" "Revista" => array:5 [ "tituloSerie" => "Biol. Conserv." "fecha" => "2006" "volumen" => "128" "paginaInicial" => "231" "paginaFinal" => "240" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "Di Marco et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Human pressures predict species’ geographic range size better than biological traits" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/gcb.12834" "Revista" => array:6 [ "tituloSerie" => "Glob. Chang. Biol." "fecha" => "2015" "volumen" => "21" "paginaInicial" => "2169" "paginaFinal" => "2178" "link" => array:1 [ …1] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "Díaz et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chapter 11: Biodiversity regulation of ecosystem services" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Ecosyst. Hum. Well Being Curr. State Trends" "fecha" => "2005" "paginaInicial" => "297" "paginaFinal" => "329" ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "Diffenbaugh and Field, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Changes in ecologically critical terrestrial climate conditions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1237123" "Revista" => array:5 [ "tituloSerie" => "Science (80-.)" "fecha" => "2013" "volumen" => "341" "paginaInicial" => "486" "paginaFinal" => "492" ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "Echeverría-Londoño et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modelling and projecting the response of local assemblage composition to land use change across Colombia" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12478" "Revista" => array:5 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2016" "volumen" => "22" "paginaInicial" => "1099" "paginaFinal" => "1111" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "Elith et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The art of modelling range-shifting species" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.2041-210X.2010.00036.x" "Revista" => array:5 [ "tituloSerie" => "Methods Ecol. Evol." "fecha" => "2010" "volumen" => "1" "paginaInicial" => "330" "paginaFinal" => "342" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "Elith and Leathwick, 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Species Distribution Models: Ecological Explanation and Prediction Across Space and Time" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev.ecolsys.110308.120159" "Revista" => array:5 [ "tituloSerie" => "Annu. Rev. Ecol. Evol. Syst." "fecha" => "2009" "volumen" => "40" "paginaInicial" => "677" "paginaFinal" => "697" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "Elith et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A statistical explanation of MaxEnt for ecologists" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1472-4642.2010.00725.x" "Revista" => array:5 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2011" "volumen" => "17" "paginaInicial" => "43" "paginaFinal" => "57" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "Fahrig, 2003" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of Habitat Fragmentation on Biodiversity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev.ecolsys.34.011802.132419" "Revista" => array:5 [ "tituloSerie" => "Annu. Rev. Ecol. Evol. Syst." "fecha" => "2003" "volumen" => "34" "paginaInicial" => "487" "paginaFinal" => "515" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "Feeley and Silman, 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Land-use and climate change effects on population size and extinction risk of Andean plants" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2486.2010.02197.x" "Revista" => array:5 [ "tituloSerie" => "Glob. Chang. Biol." "fecha" => "2010" "volumen" => "16" "paginaInicial" => "3215" "paginaFinal" => "3222" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "Ficetola et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Habitat availability for amphibians and extinction threat: A global analysis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12296" "Revista" => array:5 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2015" "volumen" => "21" "paginaInicial" => "302" "paginaFinal" => "311" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "Foden et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0065427" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2013" "volumen" => "8" "link" => array:1 [ …1] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "FORERO-MEDINA et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Constraints to Species’ Elevational Range Shifts as Climate Changes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1523-1739.2010.01572.x" "Revista" => array:6 [ "tituloSerie" => "Conserv. Biol." "fecha" => "2011" "volumen" => "25" "paginaInicial" => "163" "paginaFinal" => "171" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "Fouquet et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biocon.2010.03.012" "Revista" => array:5 [ "tituloSerie" => "Biol. Conserv." "fecha" => "2010" "volumen" => "143" "paginaInicial" => "1375" "paginaFinal" => "1384" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "Franklin, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Species distribution models in conservation biogeography: developments and challenges" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12125" "Revista" => array:5 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2013" "volumen" => "19" "paginaInicial" => "1217" "paginaFinal" => "1223" ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0235" "etiqueta" => "Galante et al., 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ecog.02909" "Revista" => array:5 [ "tituloSerie" => "Ecography (Cop.)." "fecha" => "2018" "volumen" => "41" "paginaInicial" => "726" "paginaFinal" => "736" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0240" "etiqueta" => "Garavito et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0131388" "Libro" => array:3 [ "fecha" => "2015" "paginaInicial" => "1" "paginaFinal" => "19" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0245" "etiqueta" => "Gaston and Fuller, 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The sizes of species’ geographic ranges" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "J. Appl. Ecol." "fecha" => "2009" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0250" "etiqueta" => "Grant et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep25625" "Revista" => array:5 [ "tituloSerie" => "Sci. Rep." "fecha" => "2016" "volumen" => "6" "paginaInicial" => "25625" "link" => array:1 [ …1] ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0255" "etiqueta" => "Greenberg et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amphibian species traits, evolutionary history and environment predict Batrachochytrium dendrobatidis infection patterns, but not extinction risk" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/eva.12520" "Revista" => array:6 [ "tituloSerie" => "Evol. Appl." "fecha" => "2017" "volumen" => "10" "paginaInicial" => "1130" "paginaFinal" => "1145" "link" => array:1 [ …1] ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0260" "etiqueta" => "Hannah, 2012" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Saving a Million Species, Extinction Risk From Climate Change" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.5822/978-1-61091-182-5_20" "Libro" => array:6 [ "titulo" => "Saving a Million Species" "fecha" => "2012" "paginaInicial" => "389" "paginaFinal" => "394" "editorial" => "Island Press/Center for Resource Economics" "editorialLocalizacion" => "Washington, DC" ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0265" "etiqueta" => "Hannah et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global Climate Change Adaptation Priorities for Biodiversity and Food Security" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0072590" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2013" "volumen" => "8" "link" => array:1 [ …1] ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0270" "etiqueta" => "Hanski, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s13280-011-0147-3" "Revista" => array:6 [ "tituloSerie" => "Ambio" "fecha" => "2011" "volumen" => "40" "paginaInicial" => "248" "paginaFinal" => "255" "link" => array:1 [ …1] ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0275" "etiqueta" => "Harris et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate projections for ecologists" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/wcc.291" "Revista" => array:5 [ "tituloSerie" => "Wiley Interdiscip. Rev. Clim. Chang." "fecha" => "2014" "volumen" => "5" "paginaInicial" => "621" "paginaFinal" => "637" ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0280" "etiqueta" => "Hawkins et al., 2003" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Energy, water, and broad-scale geographic patterns of species richness" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1890/03-8006" "Revista" => array:2 [ "tituloSerie" => "Ecology." "fecha" => "2003" ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0285" "etiqueta" => "Hernandez et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effect of sample size and species characteristics on performance of different species distribution modeling methods" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2006" "paginaInicial" => "773" "paginaFinal" => "785" ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0290" "etiqueta" => "Herrera-Montes et al., 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Incidencia de la perturbación antrópica en la diversidad, la riqueza y la distribución de Eleutherodactylus (Anura: Leptodactylidae) en un bosque nublado del suroccidente colombiano" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Caldasia" "fecha" => "2004" "volumen" => "26" "paginaInicial" => "265" "paginaFinal" => "274" ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0295" "etiqueta" => "Hijmans et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Very high resolution interpolated climate surfaces for global land areas" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/joc.1276" "Revista" => array:5 [ "tituloSerie" => "Int. J. Climatol." "fecha" => "2005" "volumen" => "25" "paginaInicial" => "1965" "paginaFinal" => "1978" ] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0300" "etiqueta" => "Hutter et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rapid Diversification and Time Explain Amphibian Richness at Different Scales in the Tropical Andes, Earth’s Most Biodiverse Hotspot" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1086/694319" "Revista" => array:2 [ "tituloSerie" => "Am. Nat." "fecha" => "2017" ] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0305" "etiqueta" => "IDEAM, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Escenarios de Cambio climático para la precipitacion y temperatura en Colombia - Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ "fecha" => "2015" ] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0310" "etiqueta" => "IPCC, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "editores" => "T.F.Stocker, D.Qin, G.-K.Plattner, M.Tignor, S.K.Allen, J.Boschung, A.Nauels, Y.Xia, V.B, P.M.M" "titulo" => "Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" "serieFecha" => "2013" ] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0315" "etiqueta" => "Issacs-Cubides and Urbina-Cardona, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anthropogenic Disturbance and Edge Effects on Anuran Assemblages Inhabiting Cloud Forest Fragments in Colombia" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4322/natcon.2011.004" "Revista" => array:6 [ "tituloSerie" => "Nat. Conserv." "fecha" => "2011" "volumen" => "9" "numero" => "1" "paginaInicial" => "39" "paginaFinal" => "46" ] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0320" "etiqueta" => "IUCN, 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Guidelines for Using the IUCN Red List Categories and Criteria. Version 13. Iucn 13" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "fecha" => "2017" "paginaInicial" => "108" ] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0325" "etiqueta" => "Keith et al., 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Scaling range sizes to threats for robust predictions of risks to biodiversity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/cobi.12988" "Revista" => array:6 [ "tituloSerie" => "Conserv. Biol." "fecha" => "2018" "volumen" => "32" "paginaInicial" => "322" "paginaFinal" => "332" "link" => array:1 [ …1] ] ] ] ] ] ] 65 => array:3 [ "identificador" => "bib0330" "etiqueta" => "Knutti et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Climate model genealogy: Generation CMIP5 and how we got there" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/grl.50256" "Revista" => array:5 [ "tituloSerie" => "Geophys. Res. Lett." "fecha" => "2013" "volumen" => "40" "paginaInicial" => "1194" "paginaFinal" => "1199" ] ] ] ] ] ] 66 => array:3 [ "identificador" => "bib0335" "etiqueta" => "Kramer-Schadt et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The importance of correcting for sampling bias in MaxEnt species distribution models" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12096" "Revista" => array:6 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2013" "volumen" => "19" "paginaInicial" => "1366" "paginaFinal" => "1379" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib0340" "etiqueta" => "Lawler et al., 2009" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Projected Climate Impacts for the Amphibians of the Western Hemisphere" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1523-1739.2009.01403.x" "Revista" => array:6 [ "tituloSerie" => "Conserv. Biol." "fecha" => "2009" "volumen" => "24" "paginaInicial" => "38" "paginaFinal" => "50" "link" => array:1 [ …1] ] ] ] ] ] ] 68 => array:3 [ "identificador" => "bib0345" "etiqueta" => "Lips et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amphibian Declines in Latin America: Widespread Population Declines, Extinctions, and Impacts1" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1744-7429.2005.00023.x" "Revista" => array:5 [ "tituloSerie" => "Biotropica" "fecha" => "2005" "volumen" => "37" "paginaInicial" => "163" "paginaFinal" => "165" ] ] ] ] ] ] 69 => array:3 [ "identificador" => "bib0350" "etiqueta" => "Liu et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "On the selection of thresholds for predicting species occurrence with presence-only data" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ece3.1878" "Revista" => array:6 [ "tituloSerie" => "Ecol. Evol." "fecha" => "2016" "volumen" => "6" "paginaInicial" => "337" "paginaFinal" => "348" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 70 => array:3 [ "identificador" => "bib0355" "etiqueta" => "Liu et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Selecting thresholds for the prediction of species occurrence with presence-only data" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jbi.12058" "Libro" => array:3 [ "fecha" => "2013" "paginaInicial" => "778" "paginaFinal" => "789" ] ] ] ] ] ] 71 => array:3 [ "identificador" => "bib0360" "etiqueta" => "May et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current state of conservation knowledge on threatened amphibian species in Peru" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2008" "paginaInicial" => "376" "paginaFinal" => "396" ] ] ] ] ] ] 72 => array:3 [ "identificador" => "bib0365" "etiqueta" => "Meza-Joya and Torres, 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial diversity patterns of Pristimantis frogs in the Tropical Andes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ece3.1968" "Revista" => array:6 [ "tituloSerie" => "Ecol. Evol." "fecha" => "2016" "volumen" => "6" "paginaInicial" => "1901" "paginaFinal" => "1913" "link" => array:1 [ …1] ] ] ] ] ] ] 73 => array:3 [ "identificador" => "bib0370" "etiqueta" => "Moss et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The next generation of scenarios for climate change research and assessment" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature08823" "Revista" => array:5 [ "tituloSerie" => "Nature" "fecha" => "2010" "volumen" => "463" "paginaInicial" => "747" "paginaFinal" => "756" ] ] ] ] ] ] 74 => array:3 [ "identificador" => "bib0375" "etiqueta" => "Murray et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The use of range size to assess risks to biodiversity from stochastic threats" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12533" "Revista" => array:6 [ "tituloSerie" => "Divers. Distrib." "fecha" => "2017" "volumen" => "23" "paginaInicial" => "474" "paginaFinal" => "483" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 75 => array:3 [ "identificador" => "bib0380" "etiqueta" => "Myers et al., 2000" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biodiversity hotspots for conservation priorities" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/35002501" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2000" "volumen" => "403" "paginaInicial" => "853" "paginaFinal" => "858" "link" => array:1 [ …1] ] ] ] ] ] ] 76 => array:3 [ "identificador" => "bib0385" "etiqueta" => "Navas, 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/icb/icj001" "Revista" => array:6 [ "tituloSerie" => "Integr. Comp. Biol." "fecha" => "2006" "volumen" => "46" "paginaInicial" => "82" "paginaFinal" => "91" "link" => array:1 [ …1] ] ] ] ] ] ] 77 => array:3 [ "identificador" => "bib0390" "etiqueta" => "Newbold, 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Proc. R. Soc. London B Biol. Sci." "fecha" => "2018" "paginaInicial" => "285" ] ] ] ] ] ] 78 => array:3 [ "identificador" => "bib0395" "etiqueta" => "Newbold et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global effects of land use on local terrestrial biodiversity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature14324" "Revista" => array:5 [ "tituloSerie" => "Nature" "fecha" => "2015" "volumen" => "520" "paginaInicial" => "45" "paginaFinal" => "50" ] ] ] ] ] ] 79 => array:3 [ "identificador" => "bib0400" "etiqueta" => "Nowakowski et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amphibian sensitivity to habitat modi fi cation is associated with population trends and species traits" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/geb.12571" "Libro" => array:3 [ "fecha" => "2017" "paginaInicial" => "700" "paginaFinal" => "712" ] ] ] ] ] ] 80 => array:3 [ "identificador" => "bib0405" "etiqueta" => "Ocampo-Peñuela et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/sciadv.1601367" "Revista" => array:4 [ "tituloSerie" => "Sci. Adv." "fecha" => "2016" "volumen" => "2" "link" => array:1 [ …1] ] ] ] ] ] ] 81 => array:3 [ "identificador" => "bib0410" "etiqueta" => "Oliver and Morecroft, 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/wcc.271" "Revista" => array:5 [ "tituloSerie" => "Wiley Interdiscip. Rev. Clim. Chang." "fecha" => "2014" "volumen" => "5" "paginaInicial" => "317" "paginaFinal" => "335" ] ] ] ] ] ] 82 => array:3 [ "identificador" => "bib0415" "etiqueta" => "Ortega-Andrade et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecological and geographical analysis of the distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of protected areas in future scenarios of global warming" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0121137" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2015" "volumen" => "10" "paginaInicial" => "1" "paginaFinal" => "20" ] ] ] ] ] ] 83 => array:3 [ "identificador" => "bib0420" "etiqueta" => "Owens et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2013.04.011" "Revista" => array:5 [ "tituloSerie" => "Ecol. Modell." "fecha" => "2013" "volumen" => "263" "paginaInicial" => "10" "paginaFinal" => "18" ] ] ] ] ] ] 84 => array:3 [ "identificador" => "bib0425" "etiqueta" => "Pearson et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2699.2006.01594.x" "Revista" => array:5 [ "tituloSerie" => "J. Biogeogr." "fecha" => "2007" "volumen" => "34" "paginaInicial" => "102" "paginaFinal" => "117" ] ] ] ] ] ] 85 => array:3 [ "identificador" => "bib0430" "etiqueta" => "Pearson et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Life history and spatial traits predict extinction risk due to climate change" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nclimate2113" "Revista" => array:5 [ "tituloSerie" => "Nat. Clim. Chang." "fecha" => "2014" "volumen" => "4" "paginaInicial" => "217" "paginaFinal" => "221" ] ] ] ] ] ] 86 => array:3 [ "identificador" => "bib0435" "etiqueta" => "Pereira et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Scenarios for global biodiversity in the 21st century" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1196624" "Revista" => array:6 [ "tituloSerie" => "Science (80-.)" "fecha" => "2010" "volumen" => "330" "paginaInicial" => "1496" "paginaFinal" => "1501" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 87 => array:3 [ "identificador" => "bib0440" "etiqueta" => "Peterson et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rethinking receiver operating characteristic analysis applications in ecological niche modeling" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2007.11.008" "Revista" => array:5 [ "tituloSerie" => "Ecol. Modell." "fecha" => "2008" "volumen" => "213" "paginaInicial" => "63" "paginaFinal" => "72" ] ] ] ] ] ] 88 => array:3 [ "identificador" => "bib0445" "etiqueta" => "Peterson et al., 2003" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Scenario Planning: a Tool for Conservation in an Uncertain World" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1046/j.1523-1739.2003.01491.x" "Revista" => array:5 [ "tituloSerie" => "Conserv. Biol." "fecha" => "2003" "volumen" => "17" "paginaInicial" => "358" "paginaFinal" => "366" ] ] ] ] ] ] 89 => array:3 [ "identificador" => "bib0450" "etiqueta" => "Phillips et al., 2018" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effect of fragment area on site-level biodiversity" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ecog.02956" "Revista" => array:5 [ "tituloSerie" => "Ecography (Cop.)." "fecha" => "2018" "volumen" => "41" "paginaInicial" => "1220" "paginaFinal" => "1231" ] ] ] ] ] ] 90 => array:3 [ "identificador" => "bib0455" "etiqueta" => "Phillips et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Maximum entropy modeling of species geographic distributions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2005.03.026" "Revista" => array:5 [ "tituloSerie" => "Int. J. Glob. Environ. Issues" "fecha" => "2006" "volumen" => "6" "paginaInicial" => "231" "paginaFinal" => "252" ] ] ] ] ] ] 91 => array:3 [ "identificador" => "bib0460" "etiqueta" => "Pounds et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Widespread amphibian extinctions from epidemic disease driven by global warming" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature04246" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2006" "volumen" => "439" "paginaInicial" => "161" "paginaFinal" => "167" "link" => array:1 [ …1] ] ] ] ] ] ] 92 => array:3 [ "identificador" => "bib0465" "etiqueta" => "Radosavljevic and Anderson, 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Making better M AXENT models of species distributions : complexity, overfitting and evaluation" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jbi.12227" "Libro" => array:3 [ "fecha" => "2014" "paginaInicial" => "629" "paginaFinal" => "643" ] ] ] ] ] ] 93 => array:3 [ "identificador" => "bib0470" "etiqueta" => "Ramirez-Villegas et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jnc.2014.03.007" "Revista" => array:2 [ …2] ] ] ] ] ] 94 => array:3 [ "identificador" => "bib0475" "etiqueta" => "RAXWORTHY et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2486.2008.01596.x" "Revista" => array:5 [ …5] ] ] ] ] ] 95 => array:3 [ "identificador" => "bib0480" "etiqueta" => "Riahi et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "RCP 8.5-A scenario of comparatively high greenhouse gas emissions" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10584-011-0149-y" "Revista" => array:5 [ …5] ] ] ] ] ] 96 => array:3 [ "identificador" => "bib0485" "etiqueta" => "Rodríguez Eraso et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Land use and land cover change in the Colombian Andes: dynamics and future scenarios" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/1747423X.2011.650228" "Revista" => array:5 [ …5] ] ] ] ] ] 97 => array:3 [ "identificador" => "bib0490" "etiqueta" => "Rodríguez et al., 2006" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecosistemas de los Andes colombianos" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ …2] ] ] ] ] ] 98 => array:3 [ "identificador" => "bib0495" "etiqueta" => "Ruiz and Rueda-Almonacid, 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Batrachochytrium dendrobatidis and chytridiomycosis in anuran amphibians of Colombia" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10393-008-0159-z" "Revista" => array:6 [ …6] ] ] ] ] ] 99 => array:3 [ "identificador" => "bib0500" "etiqueta" => "Sala et al., 2000" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global Biodiversity Scenarios for the Year 2100" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ …4] ] ] ] ] ] 100 => array:3 [ "identificador" => "bib0505" "etiqueta" => "Schneider-maunoury et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biocon.2016.06.011" "Revista" => array:5 [ …5] ] ] ] ] ] 101 => array:3 [ "identificador" => "bib0510" "etiqueta" => "Seimon et al., 2007" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2486.2006.01278.x" "Revista" => array:2 [ …2] ] ] ] ] ] 102 => array:3 [ "identificador" => "bib0515" "etiqueta" => "Selwood et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of climate change and land-use change on demographic rates and population viability" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/brv.12136" "Revista" => array:6 [ …6] ] ] ] ] ] 103 => array:3 [ "identificador" => "bib0520" "etiqueta" => "Shcheglovitova and Anderson, 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimating optimal complexity for ecological niche models : A jackknife approach for species with small sample sizes" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ecolmodel.2013.08.011" "Revista" => array:6 [ …6] ] ] ] ] ] 104 => array:3 [ "identificador" => "bib0525" "etiqueta" => "Sirami et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/geb.12555" "Revista" => array:5 [ …5] ] ] ] ] ] 105 => array:3 [ "identificador" => "bib0530" "etiqueta" => "Smith et al., 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Competition for land" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1098/rstb.2010.0127" "Revista" => array:5 [ …5] ] ] ] ] ] 106 => array:3 [ "identificador" => "bib0535" "etiqueta" => "Soberón et al., 2005" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/wber/lhm022" "Revista" => array:5 [ …5] ] ] ] ] ] 107 => array:3 [ "identificador" => "bib0540" "etiqueta" => "Soberón, 2010" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Niche and area of distribution modeling: a population ecology perspective" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-0587.2009.06074.x" "Revista" => array:5 [ …5] ] ] ] ] ] 108 => array:3 [ "identificador" => "bib0545" "etiqueta" => "Stuart et al., 2008" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Threatened Amphibians of the World, Lynx Edicions, Barcelona, Sppain; IUCN, Gland, Switzerland; and Conservation International, Virginia, USA" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:1 [ …1] ] ] ] ] ] 109 => array:3 [ "identificador" => "bib0550" "etiqueta" => "Stuart et al., 2004" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Status and trends of amphibian declines and extinctions worldwide" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1103538" "Revista" => array:5 [ …5] ] ] ] ] ] 110 => array:3 [ "identificador" => "bib0555" "etiqueta" => "Thompson et al., 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The importance of defining focal assemblages when evaluating amphibian and reptile responses to land use" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/cobi.12637" "Libro" => array:3 [ …3] ] ] ] ] ] 111 => array:3 [ "identificador" => "bib0560" "etiqueta" => "Thomson et al., 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "RCP4.5: A pathway for stabilization of radiative forcing by 2100" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10584-011-0151-4" "Revista" => array:5 [ …5] ] ] ] ] ] 112 => array:3 [ "identificador" => "bib0565" "etiqueta" => "Titeux et al., 2017" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global scenarios for biodiversity need to better integrate climate and land use change" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12624" "Revista" => array:5 [ …5] ] ] ] ] ] 113 => array:3 [ "identificador" => "bib0570" "etiqueta" => "Urban, 2015" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Accelerating extinction risk from climate change" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ …3] ] ] ] ] ] 114 => array:3 [ "identificador" => "bib0575" "etiqueta" => "Velásquez-Tibatá et al., 2013" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10113-012-0329-y" "Revista" => array:5 [ …5] ] ] ] ] ] 115 => array:3 [ "identificador" => "bib0580" "etiqueta" => "Visconti et al., 2016" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Projecting Global Biodiversity Indicators under Future Development Scenarios" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/conl.12159" "Revista" => array:5 [ …5] ] ] ] ] ] 116 => array:3 [ "identificador" => "bib0585" "etiqueta" => "Vonesh and De la Cruz, 2002" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Complex life cycles and density dependence: Assessing the contribution of egg mortality to amphibian declines" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00442-002-1039-9" "Revista" => array:5 [ …5] ] ] ] ] ] 117 => array:3 [ "identificador" => "bib0590" "etiqueta" => "Warren and Seifert, 2011" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1890/10-1171.1" "Revista" => array:6 [ …6] ] ] ] ] ] 118 => array:3 [ "identificador" => "bib0595" "etiqueta" => "Warren et al., 2014" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ddi.12160" "Revista" => array:5 [ …5] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack438442" "titulo" => "Acknowledgments" "texto" => "<p id="par0265" class="elsevierStylePara elsevierViewall">WJAH thanks the Government of the Department of Atlántico/Colombia for the scholarship to finance doctoral studies within the framework of the high-level Human Capital Formation project, scholarship no. 673 of 2014 awarded. To the Herpetology Group of the University of Antioquia for the contribution of presence data from its amphibian collection, to the Alexander von Humboldt Institute for the provision of anurans localities from the páramo delimitation project in Colombia.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/25300644/0000001700000004/v1_201912172122/S2530064419302111/v1_201912172122/en/main.assets" "Apartado" => array:4 [ "identificador" => "65411" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Research Letters" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/25300644/0000001700000004/v1_201912172122/S2530064419302111/v1_201912172122/en/main.pdf?idApp=UINPBA00006K&text.app=https://perspectecolconserv.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2530064419302111?idApp=UINPBA00006K" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 8 | 5 | 13 |
2024 October | 45 | 56 | 101 |
2024 September | 36 | 32 | 68 |
2024 August | 81 | 32 | 113 |
2024 July | 196 | 40 | 236 |
2024 June | 42 | 25 | 67 |
2024 May | 50 | 34 | 84 |
2024 April | 44 | 30 | 74 |
2024 March | 39 | 27 | 66 |
2024 February | 25 | 35 | 60 |
2024 January | 24 | 17 | 41 |
2023 December | 23 | 30 | 53 |
2023 November | 51 | 46 | 97 |
2023 October | 29 | 27 | 56 |
2023 September | 27 | 45 | 72 |
2023 August | 44 | 19 | 63 |
2023 July | 23 | 30 | 53 |
2023 June | 33 | 74 | 107 |
2023 May | 54 | 178 | 232 |
2023 April | 27 | 24 | 51 |
2023 March | 46 | 26 | 72 |
2023 February | 50 | 13 | 63 |
2023 January | 22 | 25 | 47 |
2022 December | 65 | 21 | 86 |
2022 November | 49 | 35 | 84 |
2022 October | 78 | 43 | 121 |
2022 September | 22 | 32 | 54 |
2022 August | 27 | 42 | 69 |
2022 July | 19 | 39 | 58 |
2022 June | 26 | 50 | 76 |
2022 May | 24 | 31 | 55 |
2022 April | 217 | 43 | 260 |
2022 March | 66 | 40 | 106 |
2022 February | 24 | 33 | 57 |
2022 January | 34 | 44 | 78 |
2021 December | 48 | 38 | 86 |
2021 November | 44 | 31 | 75 |
2021 October | 42 | 46 | 88 |
2021 September | 30 | 24 | 54 |
2021 August | 30 | 32 | 62 |
2021 July | 25 | 28 | 53 |
2021 June | 21 | 23 | 44 |
2021 May | 33 | 30 | 63 |
2021 April | 43 | 71 | 114 |
2021 March | 17 | 9 | 26 |
2021 February | 22 | 28 | 50 |
2021 January | 19 | 20 | 39 |
2020 December | 20 | 24 | 44 |
2020 November | 40 | 25 | 65 |
2020 October | 52 | 14 | 66 |
2020 September | 25 | 26 | 51 |
2020 August | 388 | 37 | 425 |
2020 July | 147 | 31 | 178 |
2020 June | 18 | 13 | 31 |
2020 May | 20 | 38 | 58 |
2020 April | 27 | 32 | 59 |
2020 March | 28 | 32 | 60 |
2020 February | 33 | 26 | 59 |
2020 January | 21 | 28 | 49 |
2019 December | 14 | 18 | 32 |